900 resultados para Field-based model
Resumo:
The purpose of this research was to investigate the effects of Processing Instruction (VanPatten, 1996, 2007), as an input-based model for teaching second language grammar, on Syrian learners’ processing abilities. The present research investigated the effects of Processing Instruction on the acquisition of English relative clauses by Syrian learners in the form of a quasi-experimental design. Three separate groups were involved in the research (Processing Instruction, Traditional Instruction and a Control Group). For assessment, a pre-test, a direct post-test and a delayed post-test were used as main tools for eliciting data. A questionnaire was also distributed to participants in the Processing Instruction group to give them the opportunity to give feedback in relation to the treatment they received in comparison with the Traditional Instruction they are used to. Four hypotheses were formulated on the possible effectivity of Processing Instruction on Syrian learners’ linguistic system. It was hypothesised that Processing Instruction would improve learners’ processing abilities leading to an improvement in learners’ linguistic system. This was expected to lead to a better performance when it comes to the comprehension and production of English relative clauses. The main source of data was analysed statistically using the ANOVA test. Cohen’s d calculations were also used to support the ANOVA test. Cohen’s d showed the magnitude of effects of the three treatments. Results of the analysis showed that both Processing Instruction and Traditional Instruction groups had improved after treatment. However, the Processing Instruction Group significantly outperformed the other two groups in the comprehension of relative clauses. The analysis concluded that Processing Instruction is a useful tool for instructing relative clauses to Syrian learners. This was enhanced by participants’ responses to the questionnaire as they were in favour of Processing Instruction, rather than Traditional Instruction. This research has theoretical and pedagogical implications. Theoretically, the study showed support for the Input hypothesis. That is, it was shown that Processing Instruction had a positive effect on input processing as it affected learners’ linguistic system. This was reflected in learners’ performance where learners were able to produce a structure which they had not been asked to produce. Pedagogically, the present research showed that Processing Instruction is a useful tool for teaching English grammar in the context where the experiment was carried out, as it had a large effect on learners’ performance.
Resumo:
Despite much anecdotal and oftentimes empirical evidence that black and ethnic minority employees do not feel integrated into organisational life and the implications of this lack of integration for their career progression, there is a dearth of research on the nature of the relationship black and ethnic minority employees have with their employing organisations. Additionally, research examining the relationship between diversity management and work outcomes has returned mixed findings. Scholars have attributed this to the lack of an empirically validated measure of workforce diversity management. Accordingly, I sought to address these gaps in the extant literature in a two-part study grounded in social exchange theory. In Study 1, I developed and validated a measure of workforce diversity management practices. Data obtained from a sample of ethnic minority employees from a cross section of organisations provided support for the validity of the scale. In Study 2, I proposed and tested a social-exchange-based model of the relationship between black and ethnic minority employees’ and their employing organisations, as well as assessed the implications of this relationship for their work outcomes. Specifically, I hypothesised: (i) perception of support for diversity, perception of overall justice, and developmental experiences (indicators of integration into organisational life) as mediators of the relationship between diversity management and social exchange with organisation; (ii) the moderating influence of diversity climate on the relationship between diversity management and these indicators of integration; and (iii) the work outcomes of social exchange with organisation defined in terms of career satisfaction, turnover intention and strain. SEM results provide support for most of the hypothesised relationships. The findings of the study contribute to the literature on workforce diversity management in a number of ways. First, the development and validation of a diversity management practice scale constitutes a first step in resolving the difficulty in operationalising and measuring the diversity management construct. Second, it explicates how and why diversity management practices influence a social exchange relationship with an employing organisation, and the implications of this relationship for the work outcomes of black and ethnic minority employees. My study’s focus on employee work outcomes is an important corrective to the predominant focus on organisational-level outcomes of diversity management. Lastly, by focusing on ethno-racial diversity my research complements the extant research on such workforce diversity indicators as age and gender.
Resumo:
This paper presents a novel intonation modelling approach and demonstrates its applicability using the Standard Yorùbá language. Our approach is motivated by the theory that abstract and realised forms of intonation and other dimensions of prosody should be modelled within a modular and unified framework. In our model, this framework is implemented using the Relational Tree (R-Tree) technique. The R-Tree is a sophisticated data structure for representing a multi-dimensional waveform in the form of a tree. Our R-Tree for an utterance is generated in two steps. First, the abstract structure of the waveform, called the Skeletal Tree (S-Tree), is generated using tone phonological rules for the target language. Second, the numerical values of the perceptually significant peaks and valleys on the S-Tree are computed using a fuzzy logic based model. The resulting points are then joined by applying interpolation techniques. The actual intonation contour is synthesised by Pitch Synchronous Overlap Technique (PSOLA) using the Praat software. We performed both quantitative and qualitative evaluations of our model. The preliminary results suggest that, although the model does not predict the numerical speech data as accurately as contemporary data-driven approaches, it produces synthetic speech with comparable intelligibility and naturalness. Furthermore, our model is easy to implement, interpret and adapt to other tone languages.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A risk-based model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction methodology, and logical insurance plans. The risk-based model uses the analytic hierarchy process (AHP), a multiple-attribute decision-making technique, to identify the factors that influence failure on specific segments and to analyze their effects by determining probability of risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost, and the cumulative effect of failure is determined through probability analysis. The technique does not totally eliminate subjectivity, but it is an improvement over the existing inspection method.
Resumo:
The profusion of performance measurement models suggested by Management Accounting literature in the 1990’s is one illustration of the substantial changes in Management Accounting teaching materials since the publication of “Relevance Lost” in 1987. At the same time, in the general context of increasing competition and globalisation it is widely thought that national cultural differences are tending to disappear, meaning that management techniques used in large companies, including performance measurement and management instruments (PMS), tend to be the same, irrespective of the company nationality or location. North American management practice is traditionally described as a contractually based model, mainly focused on financial performance information and measures (FPMs), more shareholder-focused than French companies. Within France, literature historically defined performance as being broadly multidimensional, driven by the idea that there are no universal rules of management and that efficient management takes into account local culture and traditions. As opposed to their North American brethren, French companies are pressured more by the financial institutions that fund them rather than by capital markets. Therefore, they pay greater attention to the long-term because they are not subject to quarterly capital market objectives. Hence, management in France should rely more on long-term qualitative information, less financial, and more multidimensional data to assess performance than their North American counterparts. The objective of this research is to investigate whether large French and US companies’ practices have changed in the way the textbooks have changed with regards to performance measurement and management, or whether cultural differences are still driving differences in performance measurement and management between them. The research findings support the idea that large US and French companies share the same PMS features, influenced by ‘universal’ PM models.
Resumo:
We propose a method for detecting and analyzing the so-called replay attacks in intrusion detection systems, when an intruder contributes a small amount of hostile actions to a recorded session of a legitimate user or process, and replays this session back to the system. The proposed approach can be applied if an automata-based model is used to describe behavior of active entities in a computer system.
Resumo:
Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs).
Resumo:
In recent years, there has been an increas-ing interest in learning a distributed rep-resentation of word sense. Traditional context clustering based models usually require careful tuning of model parame-ters, and typically perform worse on infre-quent word senses. This paper presents a novel approach which addresses these lim-itations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned represen-tations outperform the publicly available embeddings on 2 out of 4 metrics in the word similarity task, and 6 out of 13 sub tasks in the analogical reasoning task.
Resumo:
We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.
Resumo:
Tanulmányunk a fenntarthatóság beszerzésben való értelmezésével kapcsolatos vizsgálatához szeretne hozzájárulni. A Versenyképesség Kutatás korábbi fázisában a fenntarthatóság beszerzésben való megjelenésével, lehetséges értelmezéseivel, tartalmi elemeivel, azok strukturálásával és azokkal a motivációs tényezőkkel foglalkoztunk, mely a kezdeményezések hátterében állt. Az akkori eredményekre építve szeretnénk a témát folytatni. Áttekintjük a szakirodalom legutóbbi elemzésünk óta született eredményeit és azt szeretnénk vizsgálni, hogy az eltelt idő alatt milyen irányokban folytak a kutatások. Az áttekintésen túl kiemelünk egy-egy olyan területet, amelyek mélyebb elemzése relevánsnak tekinthető, így előremutató lehet. Az első az etika beszerzésben való értelmezése, itt fontos output a fogalmak értelmezése, áttekintése a nemzetközi szakirodalom tapasztalatai alapján, a kutatás egy másik vonulataként szeretnénk azt is vizsgálni, hogy a kutatási eredményekből és a gyakorlati problémákból kiindulva hogyan építhető a matematikai eszköztár segítségével olyan modell, mely gyakorlati relevanciával is bír. _________ This paper aims to provide an overview of the developments in the literature on sustainable purchasing. This serves as the basis of the elaboration of new research topics in the field. Based upon the literature results investigations in two topics are presented. First the issue of purchasing ethics will be investigated, with the aim to identify the effects of developments of purchasing management to ethics in purchasing. Second a new methodology to assess the effect of green criteria to the purchasing decision will be presented.
Resumo:
Climate change highly impacts on tree growth and also threatens the forest of the karstic terrains. From the 1980s the frequency of decay events of the Pinus nigra Arnold forests showed a marked increase in Hungary. To understanding the vulnerability of Pinus nigra forests to climate change on shallow karstic soils in continental-sub Mediterranean climatic conditions we developed the study of three sampled population in the typical karstic landscape of Veszprém in North Transdanubia. We built our model on non-invasive approach using the annual growth of the individuals. MPI Echam5 climate model and as aridity index the Thornthwaite Agrometeorological Index were used. Our results indicate that soil thickness up to 11 cm has a major influence on the main growth intensity, however, aridity determines the annual growth rate. Our model results showed that the increasing decay frequency in the last decades was a parallel change to the decreasing growth rate of pines. The climate model predicts the similar, increased decay frequency to the presents. Our results can be valid for a wider areas of the periphery of Mediterranean climate zone while the annual-growth based model is a cost-effective and simple method to study the vitality of pine trees in a given area.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
Urban growth models have been used for decades to forecast urban development in metropolitan areas. Since the 1990s cellular automata, with simple computational rules and an explicitly spatial architecture, have been heavily utilized in this endeavor. One such cellular-automata-based model, SLEUTH, has been successfully applied around the world to better understand and forecast not only urban growth but also other forms of land-use and land-cover change, but like other models must be fed important information about which particular lands in the modeled area are available for development. Some of these lands are in categories for the purpose of excluding urban growth that are difficult to quantify since their function is dictated by policy. One such category includes voluntary differential assessment programs, whereby farmers agree not to develop their lands in exchange for significant tax breaks. Since they are voluntary, today’s excluded lands may be available for development at some point in the future. Mapping the shifting mosaic of parcels that are enrolled in such programs allows this information to be used in modeling and forecasting. In this study, we added information about California’s Williamson Act into SLEUTH’s excluded layer for Tulare County. Assumptions about the voluntary differential assessments were used to create a sophisticated excluded layer that was fed into SLEUTH’s urban growth forecasting routine. The results demonstrate not only a successful execution of this method but also yielded high goodness-of-fit metrics for both the calibration of enrollment termination as well as the urban growth modeling itself.
Resumo:
With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. ^ In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.^