819 resultados para Fiber nonlinear optics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show experimentally and numerically that in high-speed strongly dispersion-managed standard fiber soliton systems nonlinear interactions limit the propagation distance. We present results that show that the effect of these interactions can be significantly reduced by appropriate location of the amplifier within the dispersion map. Using this technique, we have been able to extend the propagation distance of 10-Gbit/s 231–1pseudorandom binary sequence soliton data to 16, 500km over standard fiber by use of dispersion compensation. To our knowledge this distance is the farthest transmission over standard fiber without active control ever reported, and it was achieved with the amplifier placed after the dispersion-compensating fiber in a recirculating loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating-fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter's response and measurement of the external refractive index from the former's response. In addition, the host D fiber permits effective modification of the device's sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach to the improvement of the bit error rate (BER) in optical communications. We propose a design of advanced optical receiver enhanced by a nonlinear all-optical decision element. As a particular example, we demonstrate a substantial improvement in the BER over the conventional receiver for operation at 40 Gbits/s. © 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have experimentally investigated the mode dispersion property and refractive index sensitivity of dual-peak long-period fiber gratings (LPGs) that were sensitized by hydrofluoric acid (HF) etching. The nature of the coupled cladding modes close to the dispersion turning point makes the dual-peak LPGs ultrasensitive to cladding property, permitting a fine tailoring of the mode dispersion and index sensitivity by the light cladding etching method using HF acid of only 1% concentration. As an implementation of an optical biosensor, the etched device was used to detect the concentration of hemoglobin protein in a sugar solution, showing a sensitivity as high as 20 nm/1%. © 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material processing using high-intensity femtosecond (fs) laser pulses is a fast developing technology holding potential for direct writing of multi-dimensional optical structures in transparent media. In this work we re-examine nonlinear diffraction theory in context of fs laser processing of silica in sub-critical (input power less than the critical power of self-focusing) regime. We have applied well known theory, developed by Vlasov, Petrishev and Talanov, that gives analytical description of the evolution of a root-mean-square beam (not necessarily Gaussian) width RRMS(z) in medium with the Kerr nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct measurements of the absorbed energy in femtosecond laser inscription in a range of materials is performed. Key absorption parameters are characterized by fitting numerical modelling to measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel distributed sensor that utilizes the temperature and strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. With a 22-km sensing length, a strain resolution of 20 µ? and a temperature resolution of 2°C have been achieved with a spatial resolution of 5 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A femtosecond laser was used to modify a part of the cladding of a standard LPG bend sensor. The device produced wavelength shifts depending upon the direction of bend, thus making a shape sensor. © 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel optical chemsensor concept based on the cladding etched Bragg gratings in D-fiber is demonstrated. Two etched devices have been used to measure the concentrations of sugar solution, giving sensitivity as high as 0.02nm/%.