911 resultados para Fetal Gastroschisis
Resumo:
The highest rates of fetal alcohol syndrome worldwide can be found in South Africa. Particularly in impoverished townships in the Western Cape, pregnant women live in environments where alcohol intake during pregnancy has become normalized and interpersonal violence (IPV) is reported at high rates. For the current study we sought to examine how pregnancy, for both men and women, is related to alcohol use behaviors and IPV. We surveyed 2,120 men and women attending drinking establishments in a township located in the Western Cape of South Africa. Among women 13.3% reported being pregnant, and among men 12.0% reported their partner pregnant. For pregnant women, 61% reported attending the bar that evening to drink alcohol and 26% reported both alcohol use and currently experiencing IPV. Daily or almost daily binge drinking was reported twice as often among pregnant women than non-pregnant women (8.4% vs. 4.2%). Men with pregnant partners reported the highest rates of hitting sex partners, forcing a partner to have sex, and being forced to have sex. High rates of alcohol frequency, consumption, binge drinking, consumption and binge drinking were reported across the entire sample. In general, experiencing and perpetrating IPV were associated with alcohol use among all participants except for men with pregnant partners. Alcohol use among pregnant women attending shebeens is alarmingly high. Moreover, alcohol use appears to be an important factor in understanding the relationship between IPV and pregnancy. Intensive, targeted, and effective interventions for both men and women are urgently needed to address high rates of drinking alcohol among pregnant women who attend drinking establishments.
Resumo:
The beta-adrenergic receptor kinase 1 (beta ARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the beta ARK1 gene in mice by homologous recombination. No homozygote beta ARK1-/- embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, beta ARK1-/- embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the "thin myocardium syndrome" observed upon gene inactivation of several transcription factors (RXR alpha, N-myc, TEF-1, WT-1). Lethality in beta ARK1-/- embryos is likely due to heart failure as they exhibit a > 70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in beta ARK1-/- embryos demonstrate that beta ARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.
Resumo:
OBJECTIVE: Bacterial colonization of the fetal membranes and its role in pathogenesis of membrane rupture is poorly understood. Prior retrospective work revealed chorion layer thinning in preterm premature rupture of membranes (PPROM) subjects. Our objective was to prospectively examine fetal membrane chorion thinning and to correlate to bacterial presence in PPROM, preterm, and term subjects. STUDY DESIGN: Paired membrane samples (membrane rupture and membrane distant) were prospectively collected from: PPROM = 14, preterm labor (PTL = 8), preterm no labor (PTNL = 8), term labor (TL = 10), and term no labor (TNL = 8), subjects. Sections were probed with cytokeratin to identify fetal trophoblast layer of the chorion using immunohistochemistry. Fluorescence in situ hybridization was performed using broad range 16 s ribosomal RNA probe. Images were evaluated, chorion and choriodecidua were measured, and bacterial fluorescence scored. Chorion thinning and bacterial presence were compared among and between groups using Student's t-test, linear mixed effect model, and Poisson regression model (SAS Cary, NC). RESULTS: In all groups, the fetal chorion cellular layer was thinner at rupture compared to distant site (147.2 vs. 253.7 µm, p<0.0001). Further, chorion thinning was greatest among PPROM subjects compared to all other groups combined, regardless of site sampled [PPROM(114.9) vs. PTL(246.0) vs. PTNL(200.8) vs. TL(217.9) vs. TNL(246.5)]. Bacteria counts were highest among PPROM subjects compared to all other groups regardless of site sampled or histologic infection [PPROM(31) vs. PTL(9) vs. PTNL(7) vs. TL(7) vs. TNL(6)]. Among all subjects at both sites, bacterial counts were inversely correlated with chorion thinning, even excluding histologic chorioamnionitis (p<0.0001 and p = 0.05). CONCLUSIONS: Fetal chorion was uniformly thinner at rupture site compared to distant sites. In PPROM fetal chorion, we demonstrated pronounced global thinning. Although cause or consequence is uncertain, bacterial presence is greatest and inversely correlated with chorion thinning among PPROM subjects.
Resumo:
OBJECT: Chordoma cells can generate solid-like tumors in xenograft models that express some molecular characteristics of the parent tumor, including positivity for brachyury and cytokeratins. However, there is a dearth of molecular markers that relate to chordoma tumor growth, as well as the cell lines needed to advance treatment. The objective in this study was to isolate a novel primary chordoma cell source and analyze the characteristics of tumor growth in a mouse xenograft model for comparison with the established U-CH1 and U-CH2b cell lines. METHODS: Primary cells from a sacral chordoma, called "DVC-4," were cultured alongside U-CH1 and U-CH2b cells for more than 20 passages and characterized for expression of CD24 and brachyury. While brachyury is believed essential for driving tumor formation, CD24 is associated with healthy nucleus pulposus cells. Each cell type was subcutaneously implanted in NOD/SCID/IL2Rγ(null) mice. The percentage of solid tumors formed, time to maximum tumor size, and immunostaining scores for CD24 and brachyury (intensity scores of 0-3, heterogeneity scores of 0-1) were reported and evaluated to test differences across groups. RESULTS: The DVC-4 cells retained chordoma-like morphology in culture and exhibited CD24 and brachyury expression profiles in vitro that were similar to those for U-CH1 and U-CH2b. Both U-CH1 and DVC-4 cells grew tumors at rates that were faster than those for U-CH2b cells. Gross tumor developed at nearly every site (95%) injected with U-CH1 and at most sites (75%) injected with DVC-4. In contrast, U-CH2b cells produced grossly visible tumors in less than 50% of injected sites. Brachyury staining was similar among tumors derived from all 3 cell types and was intensely positive (scores of 2-3) in a majority of tissue sections. In contrast, differences in the pattern and intensity of staining for CD24 were noted among the 3 types of cell-derived tumors (p < 0.05, chi-square test), with evidence of intense and uniform staining in a majority of U-CH1 tumor sections (score of 3) and more than half of the DVC-4 tumor sections (scores of 2-3). In contrast, a majority of sections from U-CH2b cells stained modestly for CD24 (scores of 1-2) with a predominantly heterogeneous staining pattern. CONCLUSIONS: This is the first report on xenografts generated from U-CH2b cells in which a low tumorigenicity was discovered despite evidence of chordoma-like characteristics in vitro. For tumors derived from a primary chordoma cell and U-CH1 cell line, similarly intense staining for CD24 was observed, which may correspond to their similar potential to grow tumors. In contrast, U-CH2b tumors stained less intensely for CD24. These results emphasize that many markers, including CD24, may be useful in distinguishing among chordoma cell types and their tumorigenicity in vivo.
Resumo:
Retinoic acids (13-cis and 13-trans) are known teratogens, and their precursor is retinol, a form of vitamin A. In 1995, Rothman et al demonstrated an association between excessive vitamin A, >10,000 IU/day, during the first trimester of pregnancy and teratogenic effects, particularly in the central nervous system. However, vitamin A deficiency has long been known to be deleterious to the mother and fetus. Therefore, there may be a narrow therapeutic ratio for vitamin A during pregnancy that has not previously been fully appreciated. Neurodevelopmental disorders may not be apparent by macroscopic brain examination or imaging, and proving the existence of a behavioral teratogen is not straightforward. However, an excess of retinoic acid and some neurodevelopmental disorders are both associated with abnormalities in cerebellar morphology. Physical and chemical evidence strongly supports the notion that beta carotene crosses the placenta and is metabolized to retinol. Only very limited amounts of beta carotene are stored in fetal fat cells as evidenced by the fact that maternal fat is yellow from beta carotene, whereas non-brown neonatal fat is white. Furthermore, newborns of carotenemic mothers do not share the yellow complexion of their mothers. The excess 13-trans retinoic acid derived from metabolized beta carotene in the fetus increases the concentration of the more teratogenic 13-cis retinoic acid since the isomerization equilibrium is shifted to the left. Therefore, this paper proposes that consideration be given to monitoring all potential sources of fetal 13-cis and 13-trans retinoic acid, including nutritional supplements, dietary retinol, and beta carotene, particularly in the first trimester of pregnancy.
Resumo:
The ability of tissue engineered constructs to replace diseased or damaged organs is limited without the incorporation of a functional vascular system. To design microvasculature that recapitulates the vascular niche functions for each tissue in the body, we investigated the following hypotheses: (1) cocultures of human umbilical cord blood-derived endothelial progenitor cells (hCB-EPCs) with mural cells can produce the microenvironmental cues necessary to support physiological microvessel formation in vitro; (2) poly(ethylene glycol) (PEG) hydrogel systems can support 3D microvessel formation by hCB-EPCs in coculture with mural cells; (3) mesenchymal cells, derived from either umbilical cord blood (MPCs) or bone marrow (MSCs), can serve as mural cells upon coculture with hCB-EPCs. Coculture ratios between 0.2 (16,000 cells/cm2) and 0.6 (48,000 cells/cm2) of hCB-EPCs plated upon 3.3 µg/ml of fibronectin-coated tissue culture plastic with (80,000 cells/cm2) of human aortic smooth muscle cells (SMCs), results in robust microvessel structures observable for several weeks in vitro. Endothelial basal media (EBM-2, Lonza) with 9% v/v fetal bovine serum (FBS) could support viability of both hCB-EPCs and SMCs. Coculture spatial arrangement of hCB-EPCs and SMCs significantly affected network formation with mixed systems showing greater connectivity and increased solution levels of angiogenic cytokines than lamellar systems. We extended this model into a 3D system by encapsulation of a 1 to 1 ratio of hCB-EPC and SMCs (30,000 cells/µl) within hydrogels of PEG-conjugated RGDS adhesive peptide (3.5 mM) and PEG-conjugated protease sensitive peptide (6 mM). Robust hCB-EPC microvessels formed within the gel with invasion up to 150 µm depths and parameters of total tubule length (12 mm/mm2), branch points (127/mm2), and average tubule thickness (27 µm). 3D hCB-EPC microvessels showed quiescence of hCB-EPCs (<1% proliferating cells), lumen formation, expression of EC proteins connexin 32 and VE-cadherin, eNOS, basement membrane formation by collagen IV and laminin, and perivascular investment of PDGFR-β+/α-SMA+ cells. MPCs present in <15% of isolations displayed >98% expression for mural markers PDGFR-β, α-SMA, NG2 and supported hCB-EPC by day 14 of coculture with total tubule lengths near 12 mm/mm2. hCB-EPCs cocultured with MSCs underwent cell loss by day 10 with a 4-fold reduction in CD31/PECAM+ cells, in comparison to controls of hCB-EPCs in SMC coculture. Changing the coculture media to endothelial growth media (EBM-2 + 2% v/v FBS + EGM-2 supplement containing VEGF, FGF-2, EGF, hydrocortisone, IGF-1, ascorbic acid, and heparin), promoted stable hCB-EPC network formation in MSC cocultures over 2 weeks in vitro, with total segment length per image area of 9 mm/mm2. Taken together, these findings demonstrate a tissue engineered system that can be utilized to evaluate vascular progenitor cells for angiogenic therapies.
Resumo:
Given the illness and deaths caused by respiratory syncytial virus (RSV) infection during the first year of life, preventing infant RSV infections through maternal vaccination is intriguing. However, little is known about the extent and maternal effects of RSV infection during pregnancy. We describe 3 cases of maternal RSV infection diagnosed at a US center during winter 2014. Case-patient 1 (26 years old, week 33 of gestation) received a diagnosis of RSV infection and required mechanical ventilation. Case-patient 2 (27 years old, week 34 of gestation) received a diagnosis of infection with influenza A(H1N1) virus and RSV and required mechanical ventilation. Case-patient 3 (21 years old, week 32 of gestation) received a diagnosis of group A streptococcus pharyngitis and RSV infection and was monitored as an outpatient. Clarifying the effects of maternal RSV infection could yield valuable insights into potential maternal and fetal benefits of an effective RSV vaccination program.
Resumo:
Taking advantage of recent findings about membrane fluidity, the authors studied and compared the biosynthetic capacities of fetal or neonatal mouse B (bone marrow derived) lymphocytes (until 10 days after birth) and adult B lymphocytes. Although both early and adult lymphocytes can synthesize surface immunoglobulins, they have a different physiological behavior after interaction with a ligand (anti immunoglobulin sera or antigen), either in vivo or in vitro. Fetal and neonatal lymphocytes bearing surface immunoglobulins do not reexpress their membrane receptors after capping and endocytosis promoted by anti immunoglobulin sera. On the other hand, adult lymphocytes resynthesize completely their receptors after the same treatment. Furthermore, intrafetal injections of hemocyanin in pregnant mice lead to a striking decrease in the number of hemocyanin binding cells. It seems plausible that this non reexpression of surface immunoglobulins could be the first step in tolerance establishment.
Resumo:
The regular doubling of cell mass, and therefore of cell protein content, is required for repetitive cell divisions. Preliminary observations have shown that in dog thyrocytes insulin induces protein accumulation but not DNA synthesis, while TSH does not increase protein accumulation but triggers DNA synthesis in the presence of insulin. We show here that EGF and phorbol myristate ester complement insulin action in the same way. HGF is the only factor activating both protein accumulation and DNA synthesis. The effects of insulin on protein accumulation and in permitting the TSH effect are reproduced by IGF-1 and are mediated, at least in part by the IGF-1 receptor. The concentration effect curves are similar for both effects. Similar results are obtained in human thyrocytes. They reflect true cell growth, as shown by increases in RNA content and cell size. Carbachol and fetal calf serum also stimulate protein synthesis and accumulation without triggering DNA synthesis, but they are not permissive for the mitogenic effects of TSH or of the general adenylate cyclase activator, forskolin. Moreover the mitogenic effect of TSH greatly decreased in cells deprived of insulin for 2 days although these cells remain hypertrophic. Hypertrophy may therefore be necessary for cell division, but it is not sufficient to permit it. Three different mechanisms can therefore be distinguished in the mitogenic action of TSH: (1) the increase of cell mass (hypertrophy) induced by insulin or IGF-1; (2) the permissive effect of insulin or IGF-1 on the mitogenic effect of TSH which may involve both the increase of cell mass and the induction of specific proteins such as cyclin D3 and (3) the mitogenic effect of the TSH cyclic AMP cascade proper.
Resumo:
Whereas common infectious and parasitic diseases such as malaria and the HIV/AIDS pandemic remain major unresolved health problems in many developing countries, emerging non-communicable diseases relating to diet and lifestyle have been increasing over the last two decades, thus creating a double burden of disease and impacting negatively on already over-stretched health services in these countries. Prevalence rates for type 2 diabetes mellitus and CVD in sub-Saharan Africa have seen a 10-fold increase in the last 20 years. In the Arab Gulf current prevalence rates are between 25 and 35% for the adult population, whilst evidence of the metabolic syndrome is emerging in children and adolescents. The present review focuses on the concept of the epidemiological and nutritional transition. It looks at historical trends in socio-economic status and lifestyle and trends in nutrition-related non-communicable diseases over the last two decades, particularly in developing countries with rising income levels, as well as the other extreme of poverty, chronic hunger and coping strategies and metabolic adaptations in fetal life that predispose to non-communicable disease risk in later life. The role of preventable environmental risk factors for obesity and the metabolic syndrome in developing countries is emphasized and also these challenges are related to meeting the millennium development goals. The possible implications of these changing trends for human and economic development in poorly-resourced healthcare settings and the implications for nutrition training are also discussed.
Resumo:
La osteocondritis de los sesamoideos es una enfermedad infrecuente, que se puede dar en cualquiera de los dos sesamoideos, siendo una patología incapacitante. A pesar de que los sesamoideos juegan un papel fundamental en la mecánica del antepié, algunos trastornos que se dan en ellos a menudo se pasan por alto o son mal diagnosticados. Se revisa y analizan las características clínicas de la enfermedad, su tratamiento y las claves diagnósticas que nos permiten establecer un correcto diagnóstico diferencial con otros procesos patológicos que afectan a los sesamoideos.
Resumo:
Small proline-rich protein-2 (SPRR2) functions as a determinant of flexibility and permeability in the mature cornified envelope of the skin. SPRR2 is strongly upregulated by the commensal flora and may mediate signaling to differentiated epithelia of the small intestine and colon. Yet, SPRR2 function in the GI tract is largely unexplored. Using the Caco-2 model of intestinal epithelial differentiation along the crypt-villus axis, we hypothesized that SPRR2 would be preferentially expressed in post-confluent differentiated Caco-2 cells and examined SPRR2 regulation by the protein kinase A pathway (PKA) and short chain fatty acids (SCFAs). Differentiation-dependent SPRR2 expression was examined in cytoskeletal-, membrane-, and nuclear-enriched fractions by immunoblotting and confocal immunofluorescence. We studied the effect of SCFAs, known inducers of differentiation, on SPRR2 expression in pre-confluent undifferentiated Caco-2 cells and explored potential mechanisms involved in this induction using MAP kinase inhibitors. SPRR2 expression was also compared between HIEC crypt cells and 16 to 20 week primary fetal villus cells as well as in different segments in mouse small intestine and colon. We determined if SPRR2 is increased by gram negative bacteria such as S. typhimurium. SPRR2 expression increased in a differentiation-dependent manner in Caco-2 cells and was present in human fetal epithelial villus cells but absent in HIEC crypt cells. Differentiation-induced SPRR2 was down-regulated by 8-Br-cAMP as well as by forskolin/IBMX co-treatment. SPRR2 was predominantly cytoplasmic and did not accumulate in Triton X-100-insoluble cytoskeletal fractions. SPRR2 was present in the membrane- and nuclear-enriched fractions and demonstrated co-localization with F-actin at the apical actin ring. No induction was seen with the specific HDAC inhibitor trichostatin A, while SCFAs and the HDAC inhibitor SBHA all induced SPRR2. SCFA responses were inhibited by MAP kinase inhibitors SB203580 and U0126, thus suggesting that the SCFA effect may be mediated by orphan G-protein receptors GPR41 and GPR43. S. typhimurium induced SPRR2 in undifferentiated cells. We conclude that SPRR2 protein expression is associated with differentiated epithelia and is regulated by PKA signaling and by by-products of the bowel flora. This is the first report to establish an in vitro model to study the physiology and regulation of SPRR2.
CARBON MONOXIDE AND PREGNANCY: A SEARCH FOR A POSSIBLE THERAPEUTIC IN THE TREATMENT OF PRE-ECLAMPSIA
Resumo:
Pre-eclampsia (PE) is a pregnancy disorder that affects roughly 5-7% of all pregnancies and is a leading cause of both maternal and fetal/neonatal morbidity and mortality. With no present cure for the disease, researchers are interested in the lower incidence of PE observed among the cigarette smoking pregnant population. However, women who use smokeless tobacco do not experience the same decreased incidence of PE, leading to hypothesis of protection against PE from the largest combustible product of cigarette smoke, carbon monoxide (CO). Studies evaluated levels of CO in PE women and found that they were statistically lower than those of healthy pregnancy. Researchers have found CO to possess many cytoprotective and regulatory properties and specifically within the placenta, it has been found to increase perfusion pressure, decrease oxidative stress, decreases ischemia/reperfusion induced apoptosis and maintain endothelial functioning. The idea for use of CO as a possible therapeutic for PE has thus become a real possibility. This study determined CO levels in pregnant women ± smoking as well as in PE women±smoking, as to discover a possible therapeutic range for future treatments. The best correlated automated CO measurement device with blood CO levels was determined, for use in future clinical studies. This thesis also sought a possible CO delivery concentration, in order to achieve the CO levels observed in the human correlation study. A threshold level of maternal CO exposure in a murine animal model was found, for which fetal and maternal negative toxicities were not observed. The results of this thesis lend a few more pieces to the complicated puzzle involving CO and PE and offer another step toward the possibility of a therapeutic treatment/prevention using this gaseous molecule.
Resumo:
Objective To determine how long it takes from the decision to achieve delivery by non-elective caesarean section (DDI), the influence on this interval, and the impact on neonatal condition at birth. Design Twelve months prospective data collection on all non-elective caesarean sections. Methods Prospective collection of data relating to all caesarean sections in 1996 in a major teaching hospital obstetric unit was conducted, without the knowledge of the other clinicians providing clinical care. Details of the indication for section, the day and time of the decision and the interval till delivery were recorded as well as the seniority of the surgeon, and condition of the baby at birth. Results The mean time from decision-to-delivery for 100 emergency intrapartum caesarean sections was 42.9 minutes for fetal distress and 71.1 minutes for 230 without fetal distress (P<0.0001). For 22 'crash' sections the mean time from decision-to-delivery was 27.4 minutes; for 13 urgent antepartum deliveries for fetal reasons it was 124.7 minutes and for 21 with maternal reasons it was 97.4 minutes. The seniority of the surgeon managing the patient did not appear to influence the interval, nor did the time of day or day of the week when the delivery occurred. Intrapartum sections were quicker the more advanced the labour, and general anaesthesia was associated with shorter intervals than regional anaesthesia for emergency caesarean section for fetal distress (P<0.001). Babies born within one hour of the decision tended to be more acidaemic than those born later, irrespective of the indication for delivery. Babies tended to be in better condition when a time from decision-to-delivery was not recorded than those for whom the information had been recorded. Conclusion Fewer than 40% intrapartum deliveries by caesarean section for fetal distress were achieved within 30 minutes of the decision, despite that being the unit standard. There was, however, no evidence to indicate that overall an interval up to 120 minutes was detrimental to the neonate unless the delivery was a 'crash' caesarean section. These data thus do not provide evidence to sustain the recommendation of a standard of 30 minutes for intrapartum delivery by caesarean section.
Resumo:
Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.