974 resultados para Feedback visual
Resumo:
The temporal structure of neuronal spike trains in the visual cortex can provide detailed information about the stimulus and about the neuronal implementation of visual processing. Spike trains recorded from the macaque motion area MT in previous studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are analyzed here in the context of the dynamic random dot stimulus which was used to evoke them. If the stimulus is incoherent, the spike trains can be highly modulated and precisely locked in time to the stimulus. In contrast, the coherent motion stimulus creates little or no temporal modulation and allows us to study patterns in the spike train that may be intrinsic to the cortical circuitry in area MT. Long gaps in the spike train evoked by the preferred direction motion stimulus are found, and they appear to be symmetrical to bursts in the response to the anti-preferred direction of motion. A novel cross-correlation technique is used to establish that the gaps are correlated between pairs of neurons. Temporal modulation is also found in psychophysical experiments using a modified stimulus. A model is made that can account for the temporal modulation in terms of the computational theory of biological image motion processing. A frequency domain analysis of the stimulus reveals that it contains a repeated power spectrum that may account for psychophysical and electrophysiological observations.
Some neurons tend to fire bursts of action potentials while others avoid burst firing. Using numerical and analytical models of spike trains as Poisson processes with the addition of refractory periods and bursting, we are able to account for peaks in the power spectrum near 40 Hz without assuming the existence of an underlying oscillatory signal. A preliminary examination of the local field potential reveals that stimulus-locked oscillation appears briefly at the beginning of the trial.
Resumo:
This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.
Resumo:
Humans are able of distinguishing more than 5000 visual categories even in complex environments using a variety of different visual systems all working in tandem. We seem to be capable of distinguishing thousands of different odors as well. In the machine learning community, many commonly used multi-class classifiers do not scale well to such large numbers of categories. This thesis demonstrates a method of automatically creating application-specific taxonomies to aid in scaling classification algorithms to more than 100 cate- gories using both visual and olfactory data. The visual data consists of images collected online and pollen slides scanned under a microscope. The olfactory data was acquired by constructing a small portable sniffing apparatus which draws air over 10 carbon black polymer composite sensors. We investigate performance when classifying 256 visual categories, 8 or more species of pollen and 130 olfactory categories sampled from common household items and a standardized scratch-and-sniff test. Taxonomies are employed in a divide-and-conquer classification framework which improves classification time while allowing the end user to trade performance for specificity as needed. Before classification can even take place, the pollen counter and electronic nose must filter out a high volume of background “clutter” to detect the categories of interest. In the case of pollen this is done with an efficient cascade of classifiers that rule out most non-pollen before invoking slower multi-class classifiers. In the case of the electronic nose, much of the extraneous noise encountered in outdoor environments can be filtered using a sniffing strategy which preferentially samples the visensor response at frequencies that are relatively immune to background contributions from ambient water vapor. This combination of efficient background rejection with scalable classification algorithms is tested in detail for three separate projects: 1) the Caltech-256 Image Dataset, 2) the Caltech Automated Pollen Identification and Counting System (CAPICS) and 3) a portable electronic nose specially constructed for outdoor use.
Resumo:
Cells exhibit a diverse repertoire of dynamic behaviors. These dynamic functions are implemented by circuits of interacting biomolecules. Although these regulatory networks function deterministically by executing specific programs in response to extracellular signals, molecular interactions are inherently governed by stochastic fluctuations. This molecular noise can manifest as cell-to-cell phenotypic heterogeneity in a well-mixed environment. Single-cell variability may seem like a design flaw but the coexistence of diverse phenotypes in an isogenic population of cells can also serve a biological function by increasing the probability of survival of individual cells upon an abrupt change in environmental conditions. Decades of extensive molecular and biochemical characterization have revealed the connectivity and mechanisms that constitute regulatory networks. We are now confronted with the challenge of integrating this information to link the structure of these circuits to systems-level properties such as cellular decision making. To investigate cellular decision-making, we used the well studied galactose gene-regulatory network in \textit{Saccharomyces cerevisiae}. We analyzed the mechanism and dynamics of the coexistence of two stable on and off states for pathway activity. We demonstrate that this bimodality in the pathway activity originates from two positive feedback loops that trigger bistability in the network. By measuring the dynamics of single-cells in a mixed sugar environment, we observe that the bimodality in gene expression is a transient phenomenon. Our experiments indicate that early pathway activation in a cohort of cells prior to galactose metabolism can accelerate galactose consumption and provide a transient increase in growth rate. Together these results provide important insights into strategies implemented by cells that may have been evolutionary advantageous in competitive environments.
Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila melanogaster
Resumo:
Activity-dependent modulation of sensory systems has been documented in many organisms, and is likely to be essential for appropriate processing of information during different behavioral states. However, the mechanisms underlying these phenomena, and often their functional consequences, remain poorly characterized. I investigated the role of octopamine neurons in the flight-dependent modulation observed in visual interneurons in the fruit fly Drosophila melanogaster. The vertical system (VS) cells exhibit a boost in their response to visual motion during flight compared to quiescence. Pharmacological application of octopamine evokes responses in quiescent flies that mimic those observed during flight, and octopamine neurons that project to the optic lobes increase in activity during flight. Using genetic tools to manipulate the activity of octopamine neurons, I find that they are both necessary and sufficient for the flight-induced visual boost. This work provides the first evidence that endogenous release of octopamine is involved in state-dependent modulation of visual interneurons in flies. Further, I investigated the role of a single pair of octopamine neurons that project to the optic lobes, and found no evidence that chemical synaptic transmission via these neurons is necessary for the flight boost. However, I found some evidence that activation of these neurons may contribute to the flight boost. Wind stimuli alone are sufficient to generate transient increases in the VS cell response to motion vision, but result in no increase in baseline membrane potential. These results suggest that the flight boost originates not from a central command signal during flight, but from mechanosensory stimuli relayed via the octopamine system. Lastly, in an attempt to understand the functional consequences of the flight boost observed in visual interneurons, we measured the effect of inactivating octopamine neurons in freely flying flies. We found that flies whose octopamine neurons we silenced accelerate less than wild-type flies, consistent with the hypothesis that the flight boost we observe in VS cells is indicative of a gain control mechanism mediated by octopamine neurons. Together, this work serves as the basis for a mechanistic and functional understanding of octopaminergic modulation of vision in flying flies.
Resumo:
An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.
Resumo:
An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.