860 resultados para Feature nasal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new form of contrast masking in which the target is a patch of low spatial frequency grating (0.46 c/deg) and the mask is a dark thin ring that surrounds the centre of the target patch. In matching and detection experiments we found little or no effect for binocular presentation of mask and test stimuli. But when mask and test were presented briefly (33 or 200 ms) to different eyes (dichoptic presentation), masking was substantial. In a 'half-binocular' condition the test stimulus was presented to one eye, but the mask stimulus was presented to both eyes with zero-disparity. This produced masking effects intermediate to those found in dichoptic and full-binocular conditions. We suggest that interocular feature matching can attenuate the potency of interocular suppression, but unlike in previous work (McKee, S. P., Bravo, M. J., Taylor, D. G., & Legge, G. E. (1994) Stereo matching precedes dichoptic masking. Vision Research, 34, 1047) we do not invoke a special role for depth perception. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is currently, no ideal system for studying nasal drug delivery in vitro. The existing techniques such as the Ussing chamber and cell culture all have major disadvantages. Most importantly, none of the existing techniques accurately represent the interior of the nasal cavity, with its airflow and humidity; neither do they allow the investigation of solid dosage forms.The work in this thesis represents the development of an in vitro model system in which the interior characteristics of the nasal cavity are closely represented, and solid or minimal volume dosage forms can be investigated. The complete nasal chamber consists of two sections: a lower tissue, viability chamber and an upper nasal chamber. The lower tissue viability chamber has been shown, using existing tissue viability monitoring techniques, to maintain the viability of a number of epithelial tissues, including porcine and rabbit nasal tissue, and rat ileal and Payers' patch tissue. The complete chamber including the upper nasal chamber has been shown to provide tissue viability for porcine and rabbit nasal tissue above that available using the existing Ussing chamber techniques. Adaptation of the complete system, and the development of the necessary experimental protocols that allow aerosol particle-sizing, together with videography, has shown that the new factors investigated, humidity and airflow, have a measurable effect on the delivered dose from a typical nasal pump. Similarly, adaptation of the chamber to fit under a confocal microscope, and the development of the necessary protocols has shown the effect of surface and size on the penetration of microparticulate materials into nasal epithelial tissues. The system developed in this thesis has been shown to be flexible, in allowing the development of the confocal and particle-sizing systems. For future nasal drug delivery studies, the ability to measure such factors as the size of the delivered system in the nasal cavity, the depth of penetration of the formulation into the tissue are essential. Additionally, to have access to other data such as that obtained from drug transport in the same system, and to have the tissue available for histological examination represents a significant advance in the usefulness of such an in vitro technique for nasal delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nasal absorption of larger peptide and protein drugs is generally low. The importance of the mucus layer and enzymic degradation in reducing absorption were investigated. Reversed-phase high-performance liquid chromatographic (HPLC) methods were developed to assay a variety of compounds. Pig gastric mucus (PGM) was selected to investigate the importance of the mucus layer. A method of treating and storing PGM was developed and evaluated which was representative of the gel in vivo. The nature of the mucus barrier was evaluated in vitro with three-compartment diffusion cells and a series of compounds with differing physicochemical properties. Mucus retarded the diffusion of all the compounds with molecular weight and charge exerting a marked effect. Binding to mucus was investigated by a centrifugation method. All of the compounds tested were found to bind to mucus with the exception of the negatively charged molecule benzoic acid. The small peptides did not demonstrate greater binding to mucus than any of the other compounds evaluated. The effect of some absorption enhancers upon the rate of diffusion of tryptophan through mucus was determined in vi tro. At the concentrations employed the enhancers EDTA, N-acetylcysteine and taurodeoxycholic acid exerted no effect, whilst taurocholic acid and cholic acid, were found to slightly reduce the rate of diffusion. The intracellular and luminal proteolytic activity of the nose was investigated in the sheep animal model with a nasal mucosal homogenate and a nasal wash preparation respectively and a series of chemically similar peptides. Hydrolysis was also investigated with the proteolytic enzymes carboxypeptidase A, cytosolic leucine aminopeptidase and microsomal leucine aminopeptidase. Sheep nasal mucosa possesses significant peptide hydrolase activity capable of degrading all the substrates tested. Considerable variation in susceptibility was observed. Degradation occurred excl us i ve ly at the pept ide bond between the aromatic amino ac id and glycine, indicating some specificity for aromatic amino acids. Hydrolysis profiles indicated the presence of both aminopeptidase and carboxypeptidase enzymes. The specific activity of the microsomal fraction was found to be greater than the cytosolic fraction. Hydrolysis in the nasal wash indicated the presence of either luminal or loosely-bound proteases, which can degrade peptide substrates. The same specificity for aromatic amino acids was observed and aminopeptidase activity demonstrated. The specific activity of the nasal wash was smaller than that of the homogenate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influential models of edge detection have generally supposed that an edge is detected at peaks in the 1st derivative of the luminance profile, or at zero-crossings in the 2nd derivative. However, when presented with blurred triangle-wave images, observers consistently marked edges not at these locations, but at peaks in the 3rd derivative. This new phenomenon, termed ‘Mach edges’ persisted when a luminance ramp was added to the blurred triangle-wave. Modelling of these Mach edge detection data required the addition of a physiologically plausible filter, prior to the 3rd derivative computation. A viable alternative model was examined, on the basis of data obtained with short-duration, high spatial-frequency stimuli. Detection and feature-making methods were used to examine the perception of Mach bands in an image set that spanned a range of Mach band detectabilities. A scale-space model that computed edge and bar features in parallel provided a better fit to the data than 4 competing models that combined information across scale in a different manner, or computed edge or bar features at a single scale. The perception of luminance bars was examined in 2 experiments. Data for one image-set suggested a simple rule for perception of a small Gaussian bar on a larger inverted Gaussian bar background. In previous research, discriminability (d’) has typically been reported to be a power function of contrast, where the exponent (p) is 2 to 3. However, using bar, grating, and Gaussian edge stimuli, with several methodologies, values of p were obtained that ranged from 1 to 1.7 across 6 experiments. This novel finding was explained by appealing to low stimulus uncertainty, or a near-linear transducer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearest feature line-based subspace analysis is first proposed in this paper. Compared with conventional methods, the newly proposed one brings better generalization performance and incremental analysis. The projection point and feature line distance are expressed as a function of a subspace, which is obtained by minimizing the mean square feature line distance. Moreover, by adopting stochastic approximation rule to minimize the objective function in a gradient manner, the new method can be performed in an incremental mode, which makes it working well upon future data. Experimental results on the FERET face database and the UCI satellite image database demonstrate the effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this poster we presented our preliminary work on the study of spammer detection and analysis with 50 active honeypot profiles implemented on Weibo.com and QQ.com microblogging networks. We picked out spammers from legitimate users by manually checking every captured user's microblogs content. We built a spammer dataset for each social network community using these spammer accounts and a legitimate user dataset as well. We analyzed several features of the two user classes and made a comparison on these features, which were found to be useful to distinguish spammers from legitimate users. The followings are several initial observations from our analysis on the features of spammers captured on Weibo.com and QQ.com. ¦The following/follower ratio of spammers is usually higher than legitimate users. They tend to follow a large amount of users in order to gain popularity but always have relatively few followers. ¦There exists a big gap between the average numbers of microblogs posted per day from these two classes. On Weibo.com, spammers post quite a lot microblogs every day, which is much more than legitimate users do; while on QQ.com spammers post far less microblogs than legitimate users. This is mainly due to the different strategies taken by spammers on these two platforms. ¦More spammers choose a cautious spam posting pattern. They mix spam microblogs with ordinary ones so that they can avoid the anti-spam mechanisms taken by the service providers. ¦Aggressive spammers are more likely to be detected so they tend to have a shorter life while cautious spammers can live much longer and have a deeper influence on the network. The latter kind of spammers may become the trend of social network spammer. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new, dynamic feature representation method for high value parts consisting of complex and intersecting features. The method first extracts features from the CAD model of a complex part. Then the dynamic status of each feature is established between various operations to be carried out during the whole manufacturing process. Each manufacturing and verification operation can be planned and optimized using the real conditions of a feature, thus enhancing accuracy, traceability and process control. The dynamic feature representation is complementary to the design models used as underlining basis in current CAD/CAM and decision support systems. © 2012 CIRP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most machine-learning algorithms are designed for datasets with features of a single type whereas very little attention has been given to datasets with mixed-type features. We recently proposed a model to handle mixed types with a probabilistic latent variable formalism. This proposed model describes the data by type-specific distributions that are conditionally independent given the latent space and is called generalised generative topographic mapping (GGTM). It has often been observed that visualisations of high-dimensional datasets can be poor in the presence of noisy features. In this paper we therefore propose to extend the GGTM to estimate feature saliency values (GGTMFS) as an integrated part of the parameter learning process with an expectation-maximisation (EM) algorithm. The efficacy of the proposed GGTMFS model is demonstrated both for synthetic and real datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.