947 resultados para FRTL-5 CELLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effects of 5-HT, GABA and Bone Marrow Cells infused intranigrally to substantia nigra individually and in combinations on unilateral rotenone infused Parkinsonism induced rats. Scatchard analysis of DA, DA D1 and D2 receptors in the corpus striatum, cerebral cortex, cerebellum, brain stem and hippocampus showed a significant increase in the Brain regions of rotenone infused rat compared to control. Real Time PCR amplification of DA D1, D2, Bax and ubiquitin carboxy-terminal hydrolase were up regulated in the brain regions of rotenone infused rats compared to control. Gene expression studies of -Synuclien, cGMP and Cyclic AMP response element-binding protein showed a significant down regulation in Rotenone infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies.Our study demonstrated that BMC administration alone cannot reverse the above said molecular changes occurring in PD rat. 5-HT and GABA acting through their specific receptors in combination with bone marrow cells play a crucial role in the functional recovery of PD rats. 5-HT, GABA and Bone marrow cells treated PD rats showed significant reversal to control in DA receptor binding and gene expression. 5-HT and GABA have co-mitogenic property. Proliferation and differentiation of cells re-establishing the connections in Parkinson's disease facilitates the functional recovery. Thus, it is evident that 5-HT and GABA along with BMC to rotenone infused rats renders protection against oxidative, related motor and cognitive deficits which makes them clinically significant for cellbased therapy. The BMC transformed to neurons when co-transplanted with 5-HT and GABA which was confirmed with PKH2GL and nestin. These newly formed neurons have functional significance in the therapeutic recovery of Parkinson’s disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the point of view of rational exploitation and proper management of the fishery resources as well as for the development of intensive aquaculture of fishes through selective breeding, brood stock development, domestication and genetic improvement, a sound knowledge of reproductive biology and physiology of the candidate species is of great importance. In recent times, a wealth of information on maturity, spawning habits, spawning periodicity, spawning season, size at maturity and fecundity of commercially important fishes has been generated. Gametogenesis involves the transformation of Primordial germ cells in the gonads into specialised cells or gametes, namely ova in the female and sperms in male, through a series of complex morphological and cytological events. The formation of male gamete is known as spermatogenesis. In the female, the primary growth phase involving the formation of primary oocyte from oogonia is known as oogenesis, which would be followed by the secondary growth phase, in which considerable increase in the size of the oocyte occurs, due mainly to accumulation of yolk. This process is known as vitellogenesis, which would be followed by final maturation and ovulation of the ova. In the present work, basic aspects of maturation and spawning, salient features of gametogenesis and associated biochemical changes occurring during these processes in an important cultivable fish, Sillago sihama belonging to the family Sillaginidae have been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the results of investigations on the potential of spray pyrolysis technique in depositing electron selective layer over larger area for the fabrication of inverted bulk-heterojunction polymer solar cells. The electron selective layer (In2S3) was deposited using spray pyrolysis technique and the linear heterojunction device thus fabricated exhibited good uniformity in photovoltaic properties throughout the area of the device. An MEH-PPV:PCBM inverted bulk-heterojunction device with In2S3 electron selective layer (active area of 3.25 3.25 cm2) was also fabricated and tested under indoor and outdoor conditions. Fromthe indoor measurements employing a tungsten halogen lamp (50mW/cm2 illumination), an opencircuit voltage of 0.41V and a short-circuit current of 5.6mA were obtained. On the other hand, the outdoor measurements under direct sunlight (74mW/cm2) yielded an open-circuit voltage of 0.46V and a short-circuit current of 9.37mA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin film solar cells having structure CuInS2/In2S3 were fabricated using chemical spray pyrolysis (CSP) technique over ITO coated glass. Top electrode was silver film (area 0.05 cm2). Cu/In ratio and S/Cu in the precursor solution for CuInS2 were fixed as 1.2 and 5 respectively. In/S ratio in the precursor solution for In2S3 was fixed as 1.2/8. An efficiency of 0.6% (fill factor -37.6%) was obtained. Cu diffusion to the In2S3 layer, which deteriorates junction properties, is inevitable in CuInS2/In2S3 cell. So to decrease this effect and to ensure a Cu-free In2S3 layer at the top of the cell, Cu/In ratio was reduced to 1. Then a remarkable increase in short circuit current density was occurred from 3 mA/cm2 to 14.8 mA/cm2 and an efficiency of 2.13% was achieved. Also when In/S ratio was altered to 1.2/12, the short circuit current density increased to 17.8 mA/cm2 with an improved fill factor of 32% and efficiency remaining as 2%. Thus Cu/In and In/S ratios in the precursor solutions play a crucial role in determining the cell parameters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oil price rises more and more, and the world energy consumption is projected to expand by 50 percent from 2005 to 2030. Nowadays intensive research is focused on the development of alternative energies. Among them, there are dye-sensitized nanocrystalline solar cells (DSSCs) “the third generation solar cells”. The latter have gained attention during the last decade and are currently subject of intense research in the framework of renewable energies as a low-cost photovoltaic. At present DSSCs with ruthenium based dyes exhibit highest efficiencies (ca 11%). The objective of the present work is to fabricate, characterize and improve the performance of DSSCs based on metal free dyes as sensitizers, especially on perylene derivatives. The work begins by a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the DSSCs. Chapter 2 and 3 discuss the state of the art of sensitizers used in DSSCs, present the compounds used as sensitizer in the present work and illustrate practical issues of experimental techniques and device preparation. A comparative study of electrolyte-DSSCs based on P1, P4, P7, P8, P9, and P10 are presented in chapter 4. Experimental results show that the dye structure plays a crucial role in the performance of the devices. The dye based on the spiro-concept (bipolar spiro compound) exhibited a higher efficiency than the non-spiro compounds. The presence of tert-butylpyridine as additive in the electrolyte was found to increase the open circuit voltage and simultaneously decrease the efficiency. The presence of lithium ions in the electrolyte increases both output current and the efficiency. The sensitivity of the dye to cations contained in the electrolyte was investigated in the chapter 5. FT-IR and UV-Vis were used to investigate the in-situ coordination of the cation to the adsorbed dye in the working devices. The open-circuit voltage was found to depend on the number of coordination sites in the dye. P1 with most coordination sites has shown the lowest potential drop, opposite to P7, which is less sensitive to cations in the working cells. A strategy to improve the dye adsorption onto the TiO2 surface, and thus the light harvesting efficiency of the photoanode by UV treatment, is presented in chapter 6. The treatment of the TiO2 film with UV light generates hydroxyl groups and renders the TiO2 surface more and more hydrophilic. The treated TiO2 surface reacts readily with the acid anhydride group of the dye that acts as an anchoring group and improves the dye adsorption. The short-circuit current density and the efficiency of the electrolyte-based dye cells was considerably improved by the UV treatment of the TiO2 film. Solid-state dye-sensitized solar cells (SSDs) based on spiro-MeOTAD (used as hole transport material) are studied in chapter 7. The efficiency of SSDs was globally found to be lower than that of electrolyte-based solar cells. That was due to poor pore filling of the dye-loaded TiO2 film by the spin-coated spiro-MeOTAD and to the significantly slower charge transport in the spiro-MeOTAD compared to the electrolyte redox mediator. However, the presence of the donor moieties in P1 that are structurally similar to spiro-MeOTAD was found to improve the wettability of the P1-loaded TiO2 film. As a consequence the performance of the P1-based solid-state cells is better compared to the cells based on non-spiro compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most glyco-engineering approaches used to improve quality of recombinant glycoproteins involve the manipulation of glycosyltransferase and/or glycosidase expression. We investigated whether the over expression of nucleotide sugar transporters, particularly the CMP-sialic acid transporter (CMP-SAT), would be a means to improve the sialylation process in CHO cells. We hypothesized that increasing the expression of the CMP-SAT in the cells would increase the transport of the CMP-sialic acid in the Golgi lumen, hence increasing the intra-lumenal CMP-sialic acid pool, and resulting in a possible increase in sialylation extent of proteins being produced. We report the construction of a CMP-SAT expression vector which was used for transfection into CHO-IFNγ, a CHO cell line producing human IFNγ. This resulted in approximately 2 to 5 times increase in total CMP-SAT expression in some of the positive clones as compared to untransfected CHO-IFNγ, as determined using real-time PCR analysis. This in turn concurred with a 9.6% to 16.3% percent increase in site sialylation. This engineering approach has thus been identified as a novel means of improving sialylation in recombinant glycoprotein therapeutics. This strategy can be utilized feasibly on its own, or in combination with existing sialylation improvement strategies. It is believed that such multi-prong approaches are required to effectively manipulate the complex sialylation process, so as to bring us closer to the goal of producing recombinant glycoproteins of high and consistent sialylation from mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood tissue is composed approximately in 45% by cells and its derivatives, with a life span of around 120 days for erythrocytes and 3 years for certain type of lymphocytes. This lost is compensated with the hematopoietic system activity and the presence of an immature primitive cell population known as Hematopoietic Stem Cells (HSCs) which perform the hematopoiesis, a process that is active from the beginning of the fetal life and produces near to 2 x 1011 eritrocytes and 1010 white blood cells per day (1). Hematopoietic Stem Cells are capable of both self-renewal and differentiation into multiple lineages, are located in a particular niche and are identified by their own cell surface markers, as the CD34 antigen. Recently it has been possible to advance in the understanding of self-renewal, differentiation and proliferation processes and in the involvement of the signaling pathways Hedgehog, Notch and Wnt. Studying the influence of these mechanisms on in vivo and in vitro behavior and the basic biology of HSCs, has given valuable tools for the generation of alternative therapies for hematologic disorders as leukemias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dengue and Chikungunya viruses cause the most important arthropod-borne viral infections for humans. These viruses are predominant in tropical and subtropical regions. In addition, these viruses are predominant in tropical and subtropical regions. Dengue mortality rate is around 1.2 to 3.5% and deaths due to chikungunya fever are around 1 in 1000; however, half of chikungunya-infected patients evolve into a chronic state that can persist for months up to years. There are no antiviral drugs available for DENV and CHIKV treatment and prevention. Moreover, vector control strategies have failed so far. Thus, the development of potent inhibitors for a broad spectrum of RNA viruses is urgently needed. We established and characterized a new embryonic insect cell line from Culex quinquefasciatus mosquito. Also we established the flaviviruses and alphavirus replication, both in C6/36 and Lulo insect cell lines, as well as in Vero cell line. In addition we carried out a reference compound library and reference panel of assays and data for DENV, which provides a benchmark for further studies. During this study, a panel of 9 antiviral molecules, with proven in vitro anti-dengue virus activity and that act at different stages of the DENV life cycle, was selected. Finally, Favipiravir or T-705, was identified as inhibitor in vitro and in vivo of alphaviruses and the mutation K291R in nsP4, which is responsible of the polymerase activity, was found as the mode of action in CHIKV. Interestingly, lysine in motif F1 is also highly conserved in positive-stranded RNA viruses and this might explain the broad spectrum of T-705 antiviral activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient and continuous recombinant protein expression by HEK cells was evaluated in a perfused monolithic bioreactor. Highly porous synthetic cryogel scaffolds (10ml bed volume) were characterised by scanning electron microscopy and tested as cell substrates. Efficient seeding was achieved (94% inoculum retained, with 91-95% viability). Metabolite monitoring indicated continuous cell growth, and endpoint cell density was estimated by genomic DNA quantification to be 5.2x108, 1.1x109 and 3.5x1010 at day 10, 14 and 18. Culture of stably transfected cells allowed continuous production of the Drosophila cytokine Spätzle by the bioreactor at the same rate as in monolayer culture (total 1.2 mg at d18) and this protein was active. In transient transfection experiments more protein was produced per cell compared with monolayer culture. Confocal microscopy confirmed homogenous GFP expression after transient transfection within the bioreactor. Monolithic bioreactors are thus shown to be a flexible and powerful tool for manufacturing recombinant proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD40 ligation triggers IL-12 production by dendritic cells (DC) in vitro. Here, we demonstrate that CD40 cross-linking alone is not sufficient to induce IL-12 production by DC in vivo. Indeed, resting DC make neither the IL-12 p35 nor IL-12 p40 subunits and express only low levels of CD40. Nevertheless, after DC activation by microbial stimuli that primarily upregulate IL-12 p40 and augment CD40 expression, CD40 ligation induces a significant increase in IL-12 p35 and IL-12 p70 heterodimer production. Similarly, IL-12 p70 is produced during T cell activation in the presence but not in the absence of microbial stimuli. Thus, production of bioactive IL-12 by DC can be amplified by T cell–derived signals but must be initiated by innate signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) are added to bodycare cosmetics used around the human breast. We report here that all three compounds possess oestrogenic activity in assays using the oestrogen-responsive MCF7 human breast cancer cell line. At 3 000 000-fold molar excess, they were able to partially displace [H-3]oestradiol from recombinant human oestrogen receptors ER alpha and ER beta, and from cytosolic ER of MCF7 cells. At concentrations in the range of 5 x 10(-5) to 5 x 10(-4) M, they were able to increase the expression of a stably integrated oestrogen-responsive reporter gene (ERE-CAT) and of the endogenous oestrogen-responsive pS2 gene in MCF7 cells, albeit to a lesser extent than with 10(-8) M 17 beta-oestradiol. They increased the proliferation of oestrogen-dependent MCF7 cells over 7 days, which could be inhibited by the antioestrogen fulvestrant, suggesting an ER-mediated mechanism. Although the extent of stimulation of proliferation over 7 days was lower with these compounds than with 10(-8) M 17 beta-oestradiol, given a longer time period of 35 days the extent of proliferation with 10(-4) M benzyl salicylate, benzyl benzoate or butylphenylmethylpropional increased to the same magnitude as observed with 10(-8) M 17 beta-oestradiol over 14 days. This demonstrates that benzyl salicylate, benzyl benzoate and butylphenylmethylpropional are further chemical components of cosmetic products which give oestrogenic responses in a human breast cancer cell line in culture. Further research is now needed to investigate whether oestrogenic responses are detectable using in vivo models and the extent to which these compounds might be absorbed through human skin and might enter human breast tissues. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [H-3]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) M completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) M 17 beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) M 17 beta-oestradiol. On its own, 1 mu M triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [H-3]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) M testosterone and in T47D human breast cancer cells by 10(-8) M testosterone at concentrations of 10(-7) M and 10(-6) M, respectively. Triclosan at 2 x 10(-5) M antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) M testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica ( AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. Results: We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABPI), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. Conclusion: The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian follicle development is regulated through endocrine and local mechanisms. Increasing evidence indicates roles for transforming growth factor beta superfamily members, including inhibins and activins. We recently identified divergent expression of mRNAs encoding activin receptors (ActR) and inhibin co-receptor betaglycan in chicken follicles at different stages of maturation. Here, we compare the actions of LH and FSH (0, 1, 10, 100 ng/ml) on levels of mRNA for ActRI, ActRIIA, ActRIIB and betaglycan in chicken granulosa and theca cells (GC and TC) from preovulatory (F1) and prehierarchical (6-8 mm) follicles. The expression of mRNAs for LH-R and FSH-R and production of inhibin A, oestradiol and progesterone were also quantified. FSH decreased ActRIIB and ActRI mRNA levels in 6-8 mm GC, whereas LH increased the mRNA levels. Both LH and FSH enhanced ActRIIA (5- and 8.5-fold) and betaglycan mRNA expression (2- and 3.5-fold) in 6-8 mm GC. In 6-8 mm TC, LH and FSH both increased the betaglycan mRNA level (7- and 3.5-fold respectively) but did not affect ActRI, ActRIIA and ActRIIB transcript levels. In F1 GC, both LH and FSH stimulated ActRI (2- and 2.4-fold), ActRIIB (3.2- and 2.7-fold) and betaglycan (7- and 4-fold) mRNA levels, while ActRIIA mRNA was unaffected. In F1 TC, LH and FSH reduced ActRIIA (35-50%) and increased (4.5- and 7.6-fold) betaglycan mRNA, but had no effect on ActRI and ActRIIB transcript levels. Results support the hypothesis that expression of ActR and betaglycan are differentially regulated by gonadotrophins during follicle maturation in the hen. This may represent an important mechanism for fine-tuning follicle responsiveness to local and systemic activins and inhibins.