997 resultados para FLUORIDE GLASS
Resumo:
Melt-spun ribbon and bulk samples in cylindrical rod form with diameter ranging from 2 mm to 4 mm of Ti40Cu40Zr10Ni10 alloy were prepared by melt-spinning technique and copper mould casting method, respectively. The microstructure, thermal stability and mechanical properties of the bulk samples were investigated. A completely glassy single phase is formed in the 2 mm rod sample. Increasing the diameter of the rod samples resulted in the formation of CuTi crystalline phase in the 3 mm and 4 mm rod samples.
Resumo:
Linkam CSS450 optical shearing stage, wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering(SAXS) were used to investigate the effect of shear on crystal structure and crystallization morphology of the glass bead filled polypropylene( PP). The results indicate that the glass bead worked as nucleating agent for the glass bead filled PP, compared with pure PP it restrained the formation of beta-crystal after shear treatment. When the mean size of glass bead is smaller(4 mu m) shear rate had less effect on the formation of beta-crystal of PP obviously.
Resumo:
In this paper, we present a facile and general synthetic route to high-quality alkaline earth metal fluoride (AEF(2), AE = Ca, Sr, Ba) nanocrystals and CaF2:Tb3+ nanocrystals based on the thermal decomposition of corresponding trifluoroacetate precursors in hot oleylamine. X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectra, photoluminescence spectra, and kinetic decays were employed to characterize the samples. The use of single-source precursors plays an important role in the formation of high-quality AEF(2) nanocrystals, and the formation process is demonstrated in detail.
Resumo:
Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.
Resumo:
Compatibilized blends of poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) were developed using maleated PVDF (PVDF-g-MA). Excellent compatibilization between PVDF and TPU was demonstrated by theological, morphological, and mechanical measurements. The introduction of PVDF-g-MA into the PVDF/TPU blends caused an increase in viscosity and storage modulus. Much finer morphology was clearly observed by SEM. The tensile tests showed that the tensile strength and ultimate elongation achieved a significant improvement with addition of PVDF-g-MA.
Resumo:
In this paper, we introduced a novel bonding method of glass wafers by Diels-Alder reaction at mild temperature. After standard hydroxylization and aminosilylation, two wafers were modified by 2-furaldehyde and maleic anhydride, respectively. Then they were brought into close contact and tightly held with a clamping fixture. A strong bonding could be achieved by annealing for 5 h at 200 degrees C. Bonding strength is as high as 1.78 MPa and sufficient for most application of microfluidic chips.
Resumo:
Ti40Cu40Ni10Zr10-xScx (x = 0.5 and 1, at%) alloys were prepared by copper mould casting method. Microstructures of the phi 3 mm rod alloys were investigated by XRD and SEM. The results showed that the phi 3 mm rods were glassy matrix with TiCu crystalline phase. Mechanical properties were studied by compressive test. Ti40Cu40Ni10Zr9Sc1 alloy exhibited good compressive strength over 2200 MPa and superior compressive deformation is about 7.9%.
Resumo:
A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.
Resumo:
SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.
Resumo:
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs-R6G) were assembled on glass and used as the seeds to in situ grow silver-coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs-R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV-visible spectroscopy. More importantly, the obtained silver-coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs-R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs-R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min.
Resumo:
Lutetium fluorides with different compositions, crystal phases, and morphologies, such as beta-NaLuF4 hexagonal microprisms, microdisks, mirotubes, alpha-NaLuF4 submicrospheres, LuF3 octahedra, and NH4Lu2F7 icosahedra, prolate ellipsoids and spherical particles have been successfully synthesized via a facile hydrothermal route. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and photoluminescence spectra were used to characterize the samples. The intrinsic structural feature of lutetium fluorides, the solution pH values, F- sources, and organic additives (Cit(3-) and EDTA) account for the ultimate shape evolutions of the final products. The possible formation mechanisms for products with various architectures have been presented. Additionally, we investigated the upconversion luminescence properties of beta-NaLuF4: 20% Yb3+/2% Er3+ with different morphologies.
Resumo:
Highly ordered, vertically oriented TiO2 nanotube arrays were prepared by potentiostatic anodization of titanium on FTO-coated glass substrate and for the first time successfully applied in the fabrication of solid-state dye sensitized solar cells (SSDSCs), giving a power conversion efficiency of 1.67% measured under an irradiation of air mass 1.5 global (AM 1.5 G) full sunlight. Furthermore, 3.8% efficiency was reached with a 2.8 mu m thin TiO2 nanotube array film based on a metal free organic dye using ionic liquid electrolyte.
Resumo:
beta-NaYF4 microcrystals with a variety of morphologies, such as microrod, hexagonal microprism, and octadecahedron, have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of beta-NaYF4 seeds and two important external factors, namely, the pH values in the initial reaction solution and fluoride sources, are responsible for shape determination of beta-NaYF4 microcrystals. It is found that the organic additive trisodium citrate (Cit(3-)) as a shape modifier has the dynamic effect by adjusting the growth rate of different facets under different experimental conditions, resulting in the formation of the anisotropic geometries of various beta-NaYF4 microcrystals. The possible formation mechanisms for products with various architectures have been presented. A systematic study on the photoluminescence of Tb3+-doped beta-NaYF4 samples with rod, prism, and octadecahedral shapes has shown that the optical properties of these phosphors are strongly dependent on their morphologies and sizes.
Resumo:
Different fluoride materials are used as gate dielectrics to fabricate copper phthalocyanine (CuPc) thin film. transistors (OTFTs). The fabricated devices exhibit good electrical characteristics and the mobility is found to be dependent on the gate voltage from 10(-3) to 10(-1) cm(2) V(-1)s(-1). The observed noticeable electron injection at the drain electrode is of great significance in achieving ambipolar OTFTs. The same method for formation of organic semiconductors and gate dielectric films greatly simplifies the fabrication process. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for integration in organic displays.