951 resultados para FIELD MEASUREMENT
Resumo:
In many bridges, vertical displacements are one of the most relevant parameters for structural health monitoring in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurement using curvature measurements is proposed. In addition, with the successful development of a FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full-scale bridge was conducted. It shows that both the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
We modified a commercial Hartmann-Shack aberrometer and used it to measure ocular aberrations across the central 42º horizontal x 32º vertical visual fields of five young emmetropic subjects. Some Zernike aberration coefficients show coefficient field distributions that were similar to the field dependence predicted by Seidel theory (astigmatism, oblique astigmatism, horizontal coma, vertical coma), but defocus did not demonstrate such similarity.
Resumo:
This study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, “to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice” (Gable et al, 2006). IS-Impact is defined as “a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups” (Gable Sedera and Chan, 2008). Track efforts have yielded the bicameral IS-Impact measurement model; the “impact” half includes Organizational-Impact and Individual-Impact dimensions; the “quality” half includes System-Quality and Information-Quality dimensions. The IS-Impact model, by design, is intended to be robust, simple and generalizable, to yield results that are comparable across time, stakeholders, different systems and system contexts. The model and measurement approach employ perceptual measures and an instrument that is relevant to key stakeholder groups, thereby enabling the combination or comparison of stakeholder perspectives. Such a validated and widely accepted IS-Impact measurement model has both academic and practical value. It facilitates systematic operationalization of a main dependent variable in research (IS-Impact), which can also serve as an important independent variable. For IS management practice it provides a means to benchmark and track the performance of information systems in use. The objective of this study is to develop a Mandarin version IS-Impact model, encompassing a list of China-specific IS-Impact measures, aiding in a better understanding of the IS-Impact phenomenon in a Chinese organizational context. The IS-Impact model provides a much needed theoretical guidance for this investigation of ES and ES impacts in a Chinese context. The appropriateness and soundness of employing the IS-Impact model as a theoretical foundation are evident: the model originated from a sound theory of IS Success (1992), developed through rigorous validation, and also derived in the context of Enterprise Systems. Based on the IS-Impact model, this study investigates a number of research questions (RQs). Firstly, the research investigated what essential impacts have been derived from ES by Chinese users and organizations [RQ1]. Secondly, we investigate which salient quality features of ES are perceived by Chinese users [RQ2]. Thirdly, we seek to answer whether the quality and impacts measures are sufficient to assess ES-success in general [RQ3]. Lastly, the study attempts to address whether the IS-Impact measurement model is appropriate for Chinese organizations in terms of evaluating their ES [RQ4]. An open-ended, qualitative identification survey was employed in the study. A large body of short text data was gathered from 144 Chinese users and 633 valid IS-Impact statements were generated from the data set. A generally inductive approach was applied in the qualitative data analysis. Rigorous qualitative data coding resulted in 50 first-order categories with 6 second-order categories that were grounded from the context of Chinese organization. The six second-order categories are: 1) System Quality; 2) Information Quality; 3) Individual Impacts;4) Organizational Impacts; 5) User Quality and 6) IS Support Quality. The final research finding of the study is the contextualized Mandarin version IS-Impact measurement model that includes 38 measures organized into 4 dimensions: System Quality, information Quality, Individual Impacts and Organizational Impacts. The study also proposed two conceptual models to harmonize the IS-Impact model and the two emergent constructs – User Quality and IS Support Quality by drawing on previous IS effectiveness literatures and the Work System theory proposed by Alter (1999) respectively. The study is significant as it is the first effort that empirically and comprehensively investigates IS-Impact in China. Specifically, the research contributions can be classified into theoretical contributions and practical contributions. From the theoretical perspective, through qualitative evidence, the study test and consolidate IS-Impact measurement model in terms of the quality of robustness, completeness and generalizability. The unconventional research design exhibits creativity of the study. The theoretical model does not work as a top-down a priori seeking for evidence demonstrating its credibility; rather, the study allows a competitive model to emerge from the bottom-up and open-coding analysis. Besides, the study is an example extending and localizing pre-existing theory developed in Western context when the theory is introduced to a different context. On the other hand, from the practical perspective, It is first time to introduce prominent research findings in field of IS Success to Chinese academia and practitioner. This study provides a guideline for Chinese organizations to assess their Enterprise System, and leveraging IT investment in the future. As a research effort in ITPS track, this study contributes the research team with an alternative operationalization of the dependent variable. The future research can take on the contextualized Mandarin version IS-Impact framework as a theoretical a priori model, further quantitative and empirical testing its validity.
Resumo:
Increasing global competitiveness worldwide has forced manufacturing organizations to produce high-quality products more quickly and at a competitive cost. In order to reach these goals, they need good quality components from suppliers at optimum price and lead time. This actually forced all the companies to adapt different improvement practices such as lean manufacturing, Just in Time (JIT) and effective supply chain management. Applying new improvement techniques and tools cause higher establishment costs and more Information Delay (ID). On the contrary, these new techniques may reduce the risk of stock outs and affect supply chain flexibility to give a better overall performance. But industry people are unable to measure the overall affects of those improvement techniques with a standard evaluation model .So an effective overall supply chain performance evaluation model is essential for suppliers as well as manufacturers to assess their companies under different supply chain strategies. However, literature on lean supply chain performance evaluation is comparatively limited. Moreover, most of the models assumed random values for performance variables. The purpose of this paper is to propose an effective supply chain performance evaluation model using triangular linguistic fuzzy numbers and to recommend optimum ranges for performance variables for lean implementation. The model initially considers all the supply chain performance criteria (input, output and flexibility), converts the values to triangular linguistic fuzzy numbers and evaluates overall supply chain performance under different situations. Results show that with the proposed performance measurement model, improvement area for each variable can be accurately identified.
Resumo:
Water uptake refers to the ability of atmospheric particles to take up water vapour from the surrounding atmosphere. This is an important property that affects particle size and phase and therefore influences many characteristics of aerosols relevant to air quality and climate. However, the water uptake properties of many important atmospheric aerosol systems, including those related to the oceans, are still not fully understood. Therefore, the primary aim of this PhD research program was to investigate the water uptake properties of marine aerosols. In particular, the effect of organics on marine aerosol water uptake was investigated. Field campaigns were conducted at remote coastal sites on the east coast of Australia (Agnes Water; March-April 2007) and west coast of Ireland (Mace Head; June 2007), and laboratory measurements were performed on bubble-generated sea spray aerosols. A combined Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was employed in all experiments. This system probes the changes in the hygroscopic properties of nanoparticles as volatile organic components are progressively evaporated. It also allows particle composition to be inferred from combined volatility-hygroscopicity measurements. Frequent new particle formation and growth events were observed during the Agnes Water campaign. The VH-TDMA was used to investigate freshly nucleated particles (17-22.5 nm) and it was found that the condensation of sulphate and/or organic vapours was responsible for driving particle growth during the events. Aitken mode particles (~40 nm) were also measured with the VH-TDMA. In 3 out of 18 VH-TDMA scans evaporation of a volatile, organic component caused a very large increase in hygroscopicity that could only be explained by an increase in the absolute water uptake of the particle residuals, and not merely an increase in their relative hygroscopicity. This indicated the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). It was suggested that the suppression of water uptake was caused by either a reduced rate of hygroscopic growth due to the presence of organic films, or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity. Mixed organic-inorganic particles were rarely observed by the VH-TDMA during the summer campaign conducted at Mace Head. The majority of particles below 100 nm in clean, marine air appeared to be sulphates neutralised to varying degrees by ammonia. On one unique day, 26 June 2007, particularly large concentrations of sulphate aerosol were observed and identified as volcanic emissions from Iceland. The degree of neutralisation of the sulphate aerosol by ammonia was calculated by the VH-TDMA and found to compare well with the same quantity measured by an aerosol mass spectrometer. This was an important verification of the VH-TMDA‘s ability to identify ammoniated sulphate aerosols based on the simultaneous measurement of aerosol volatility and hygroscopicity. A series of measurements were also conducted on sea spray aerosols generated from Moreton Bay seawater samples in a laboratory-based bubble chamber. Accumulation mode sea spray particles (38-173 nm) were found to contain only a minor organic fraction (< 10%) that had little effect on particle hygroscopicity. These results are important because previous studies have observed that accumulation mode sea spray particles are predominantly organic (~80% organic mass fraction). The work presented here suggests that this is not always the case, and that there may be currently unknown factors that are controlling the transfer of organics to the aerosol phase during the bubble bursting process. Taken together, the results of this research program have significantly improved our understanding of organic-containing marine aerosols and the way they interact with water vapour in the atmosphere.
Resumo:
PURPOSE: To examine the visual predictors of falls and injurious falls among older adults with glaucoma. METHODS: Prospective falls data were collected for 71 community-dwelling adults with primary open-angle glaucoma, mean age 73.9 ± 5.7 years, for one year using monthly falls diaries. Baseline assessment of central visual function included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from monocular Humphrey Field Analyser plots. Rate ratios (RR) for falls and injurious falls with 95% confidence intervals (CIs) were based on negative binomial regression models. RESULTS: During the one year follow-up, 31 (44%) participants experienced at least one fall and 22 (31%) experienced falls that resulted in an injury. Greater visual impairment was associated with increased falls rate, independent of age and gender. In a multivariate model, more extensive field loss in the inferior region was associated with higher rate of falls (RR 1.57, 95%CI 1.06, 2.32) and falls with injury (RR 1.80, 95%CI 1.12, 2.98), adjusted for all other vision measures and potential confounding factors. Visual acuity, contrast sensitivity, and superior field loss were not associated with the rate of falls; topical beta-blocker use was also not associated with increased falls risk. CONCLUSIONS: Falls are common among older adults with glaucoma and occur more frequently in those with greater visual impairment, particularly in the inferior field region. This finding highlights the importance of the inferior visual field region in falls risk and assists in identifying older adults with glaucoma at risk of future falls, for whom potential interventions should be targeted. KEY WORDS: glaucoma, visual field, visual impairment, falls, injury
Resumo:
Since predictions of scalar dispersion in small estuaries can rarely be predicted accurately, new field measurements were conducted continuously at relatively high frequency for up to 50 h (per investigation) in a small subtropical estuary with semidiurnal tides. The bulk flow parameters varied in time with periods comparable to tidal cycles and other large-scale processes. The turbulence properties depended upon the instantaneous local flow properties. They were little affected by the flow history, but their structure and temporal variability were influenced by a variety of parameters including the tidal conditions and bathymetry. A striking feature of the data sets was the large fluctuations in all turbulence characteristics during the tidal cycle, and basic differences between neap and spring tide turbulence.
Resumo:
In recent years, the effect of ions and ultrafine particles on ambient air quality and human health has been well documented, however, knowledge about their sources, concentrations and interactions within different types of urban environments remains limited. This thesis presents the results of numerous field studies aimed at quantifying variations in ion concentration with distance from the source, as well as identifying the dynamics of the particle ionisation processes which lead to the formation of charged particles in the air. In order to select the most appropriate measurement instruments and locations for the studies, a literature review was also conducted on studies that reported ion and ultrafine particle emissions from different sources in a typical urban environment. The initial study involved laboratory experiments on the attachment of ions to aerosols, so as to gain a better understanding of the interaction between ions and particles. This study determined the efficiency of corona ions at charging and removing particles from the air, as a function of different particle number and ion concentrations. The results showed that particle number loss was directly proportional to particle charge concentration, and that higher small ion concentrations led to higher particle deposition rates in all size ranges investigated. Nanoparticles were also observed to decrease with increasing particle charge concentration, due to their higher Brownian mobility and subsequent attachment to charged particles. Given that corona discharge from high voltage powerlines is considered one of the major ion sources in urban areas, a detailed study was then conducted under three parallel overhead powerlines, with a steady wind blowing in a perpendicular direction to the lines. The results showed that large sections of the lines did not produce any corona at all, while strong positive emissions were observed from discrete components such as a particular set of spacers on one of the lines. Measurements were also conducted at eight upwind and downwind points perpendicular to the powerlines, spanning a total distance of about 160m. The maximum positive small and large ion concentrations, and DC electric field were observed at a point 20 m downwind from the lines, with median values of 4.4×103 cm-3, 1.3×103 cm-3 and 530 V m-1, respectively. It was estimated that, at this point, less than 7% of the total number of particles was charged. The electrical parameters decreased steadily with increasing downwind distance from the lines but remained significantly higher than background levels at the limit of the measurements. Moreover, vehicles are one of the most prevalent ion and particle emitting sources in urban environments, and therefore, experiments were also conducted behind a motor vehicle exhaust pipe and near busy motorways, with the aim of quantifying small ion and particle charge concentration, as well as their distribution as a function of distance from the source. The study found that approximately equal numbers of positive and negative ions were observed in the vehicle exhaust plume, as well as near motorways, of which heavy duty vehicles were believed to be the main contributor. In addition, cluster ion concentration was observed to decrease rapidly within the first 10-15 m from the road and ion-ion recombination and ion-aerosol attachment were the most likely cause of ion depletion, rather than dilution and turbulence related processes. In addition to the above-mentioned dominant ion sources, other sources also exist within urban environments where intensive human activities take place. In this part of the study, airborne concentrations of small ions, particles and net particle charge were measured at 32 different outdoor sites in and around Brisbane, Australia, which were classified into seven different groups as follows: park, woodland, city centre, residential, freeway, powerlines and power substation. Whilst the study confirmed that powerlines, power substations and freeways were the main ion sources in an urban environment, it also suggested that not all powerlines emitted ions, only those with discrete corona discharge points. In addition to the main ion sources, higher ion concentrations were also observed environments affected by vehicle traffic and human activities, such as the city centre and residential areas. A considerable number of ions were also observed in a woodland area and it is still unclear if they were emitted directly from the trees, or if they originated from some other local source. Overall, it was found that different types of environments had different types of ion sources, which could be classified as unipolar or bipolar particle sources, as well as ion sources that co-exist with particle sources. In general, fewer small ions were observed at sites with co-existing sources, however particle charge was often higher due to the effect of ion-particle attachment. In summary, this study quantified ion concentrations in typical urban environments, identified major charge sources in urban areas, and determined the spatial dispersion of ions as a function of distance from the source, as well as their controlling factors. The study also presented ion-aerosol attachment efficiencies under high ion concentration conditions, both in the laboratory and in real outdoor environments. The outcomes of these studies addressed the aims of this work and advanced understanding of the charge status of aerosols in the urban environment.
Resumo:
Inter-Vehicular Communications (IVC) are considered a promising technological approach for enhancing transportation safety and improving highway efficiency. Previous theoretical work has demonstrated the benefits of IVC in vehicles strings. Simulations of partially IVC-equipped vehicles strings showed that only a small equipment ratio is sufficient to drastically reduce the number of head on collisions. However, these results are based on the assumptions that IVC exhibit lossless and instantaneous messages transmission. This paper presents the research design of an empirical measurement of a vehicles string, with the goal of highlighting the constraints introduced by the actual characteristics of communication devices. A warning message diffusion system based on IEEE 802.11 wireless technology was developed for an emergency breaking scenario. Preliminary results are presented as well, showing the latencies introduced by using 802.11a and discussing early findings and experimental limitations
Resumo:
Objective To determine the test-retest reliability of measurements of thickness, fascicle length (Lf) and pennation angle (θ) of the vastus lateralis (VL) and gastrocnemius medialis (GM) muscles in older adults. Participants Twenty-one healthy older adults (11 men and ten women; average age 68·1 ± 5·2 years) participated in this study. Methods Ultrasound images (probe frequency 10 MHz) of the VL at two sites (VL site 1 and 2) were obtained with participants seated with knee at 90º flexion. For GM measures, participants lay prone with ankle fixed at 15º dorsiflexion. Measures were taken on two separate occasions, 7 days apart (T1 and T2). Results The ICCs (95% CI) were: VL site 1 thickness = 0·96(0·90–0·98); VL site 2 thickness = 0·96(0·90–0·98), VL θ = 0·87(0·68–0·95), VL Lf = 0·80(0·50–0·92), GM thickness = 0·97(0·92–0·99), GM θ = 0·85(0·62–0·94) and GM Lf =0·90(0·75–0·96). The 95% ratio limits of agreement (LOAs) for all measures, calculated by multiplying the standard deviation of the ratio of the results between T1 and T2 by 1·96, ranged from 10·59 to 38·01%. Conclusion The ability of these tests to determine a real change in VL and GM muscle architecture is good on a group level but problematic on an individual level as the relatively large 95% ratio LOAs in the current study may encompass the changes in architecture observed in other training studies. Therefore, the current findings suggest that B-mode ultrasonography can be used with confidence by researchers when investigating changes in muscle architecture in groups of older adults, but its use is limited in showing changes in individuals over time.
Resumo:
Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.
Resumo:
Lighting industry professionals work in an international marketplace and encounter a range of social, geographical and cultural challenges associated with this. Education in lighting should introduce students to aspects of these challenges. To achieve this, an international field trip was recently undertaken that sought to provide an authentic learning experience for students. Twelve Masters of Lighting students from two Australian universities took part in a field trip to Shanghai, China and surrounding areas. The goal was to offer students insight into practical issues in the lighting industry at an international level and to do so in a unique and authentic context. To evaluate the outcomes of the trip, each participant was surveyed afterwards. Benefits were identified in terms of: increased knowledge and insight into manufacturing issues in lighting, experiential learning in lighting design practice not available locally (e.g, master planning), increased understanding of cultural influences in design and enhancing professional contacts within the lighting industry. Field trips may also act as an inverted curriculum experience for new students to engage them and promote learning within a professional context.
Resumo:
The quality assurance of stereotactic radiotherapy and radiosurgery treatments requires the use of small-field dose measurements that can be experimentally challenging. This study used Monte Carlo simulations to establish that PAGAT dosimetry gel can be used to provide accurate, high resolution, three-dimensional dose measurements of stereotactic radiotherapy fields. A small cylindrical container (4 cm height, 4.2 cm diameter) was filled with PAGAT gel, placed in the parietal region inside a CIRS head phantom, and irradiated with a 12 field stereotactic radiotherapy plan. The resulting three-dimensional dose measurement was read out using an optical CT scanner and compared with the treatment planning prediction of the dose delivered to the gel during the treatment. A BEAMnrc DOSXYZnrc simulation of this treatment was completed, to provide a standard against which the accuracy of the gel measurement could be gauged. The three dimensional dose distributions obtained from Monte Carlo and from the gel measurement were found to be in better agreement with each other than with the dose distribution provided by the treatment planning system's pencil beam calculation. Both sets of data showed close agreement with the treatment planning system's dose distribution through the centre of the irradiated volume and substantial disagreement with the treatment planning system at the penumbrae. The Monte Carlo calculations and gel measurements both indicated that the treated volume was up to 3 mm narrower, with steeper penumbrae and more variable out-of-field dose, than predicted by the treatment planning system. The Monte Carlo simulations allowed the accuracy of the PAGAT gel dosimeter to be verified in this case, allowing PAGAT gel to be utilised in the measurement of dose from stereotactic and other radiotherapy treatments, with greater confidence in the future.
Resumo:
DeLone and McLean (1992, p. 16) argue that the concept of “system use” has suffered from a “too simplistic definition.” Despite decades of substantial research on system use, the concept is yet to receive strong theoretical scrutiny. Many measures of system use and the development of measures have been often idiosyncratic and lack credibility or comparability. This paper reviews various attempts at conceptualization and measurement of system use and then proposes a re-conceptualization of it as “the level of incorporation of an information system within a user’s processes.” The definition is supported with the theory of work systems, system, and Key-User-Group considerations. We then go on to develop the concept of a Functional- Interface-Point (FIP) and four dimensions of system usage: extent, the proportion of the FIPs used by the business process; frequency, the rate at which FIPs are used by the participants in the process; thoroughness, the level of use of information/functionality provided by the system at an FIP; and attitude towards use, a set of measures that assess the level of comfort, degree of respect and the challenges set forth by the system. The paper argues that the automation level, the proportion of the business process encoded by the information system has a mediating impact on system use. The article concludes with a discussion of some implications of this re-conceptualization and areas for follow on research.
Resumo:
The majority of the world’s population now lives in cities (United Nations, 2008) resulting in an urban densification requiring people to live in closer proximity and share urban infrastructure such as streets, public transport, and parks within cities. However, “physical closeness does not mean social closeness” (Wellman, 2001, p. 234). Whereas it is a common practice to greet and chat with people you cross paths with in smaller villages, urban life is mainly anonymous and does not automatically come with a sense of community per se. Wellman (2001, p. 228) defines community “as networks of interpersonal ties that provide sociability, support, information, a sense of belonging and social identity.” While on the move or during leisure time, urban dwellers use their interactive information communication technology (ICT) devices to connect to their spatially distributed community while in an anonymous space. Putnam (1995) argues that available technology privatises and individualises the leisure time of urban dwellers. Furthermore, ICT is sometimes used to build a “cocoon” while in public to avoid direct contact with collocated people (Mainwaring et al., 2005; Bassoli et al., 2007; Crawford, 2008). Instead of using ICT devices to seclude oneself from the surrounding urban environment and the collocated people within, such devices could also be utilised to engage urban dwellers more with the urban environment and the urban dwellers within. Urban sociologists found that “what attracts people most, it would appear, is other people” (Whyte, 1980, p. 19) and “people and human activity are the greatest object of attention and interest” (Gehl, 1987, p. 31). On the other hand, sociologist Erving Goffman describes the concept of civil inattention, acknowledging strangers’ presence while in public but not interacting with them (Goffman, 1966). With this in mind, it appears that there is a contradiction between how people are using ICT in urban public places and for what reasons and how people use public urban places and how they behave and react to other collocated people. On the other hand there is an opportunity to employ ICT to create and influence experiences of people collocated in public urban places. The widespread use of location aware mobile devices equipped with Internet access is creating networked localities, a digital layer of geo-coded information on top of the physical world (Gordon & de Souza e Silva, 2011). Foursquare.com is an example of a location based 118 Mobile Multimedia – User and Technology Perspectives social network (LBSN) that enables urban dwellers to virtually check-in into places at which they are physically present in an urban space. Users compete over ‘mayorships’ of places with Foursquare friends as well as strangers and can share recommendations about the space. The research field of Urban Informatics is interested in these kinds of digital urban multimedia augmentations and how such augmentations, mediated through technology, can create or influence the UX of public urban places. “Urban informatics is the study, design, and practice of urban experiences across different urban contexts that are created by new opportunities of real-time, ubiquitous technology and the augmentation that mediates the physical and digital layers of people networks and urban infrastructures” (Foth et al., 2011, p. 4). One possibility to augment the urban space is to enable citizens to digitally interact with spaces and urban dwellers collocated in the past, present, and future. “Adding digital layer to the existing physical and social layers could facilitate new forms of interaction that reshape urban life” (Kjeldskov & Paay, 2006, p. 60). This methodological chapter investigates how the design of UX through such digital placebased mobile multimedia augmentations can be guided and evaluated. First, we describe three different applications that aim to create and influence the urban UX through mobile mediated interactions. Based on a review of literature, we describe how our integrated framework for designing and evaluating urban informatics experiences has been constructed. We conclude the chapter with a reflective discussion on the proposed framework.