919 resultados para FIBER MICROELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compression properties of octave-spanning supercontinuum spectra generated in photonic crystal fibers are studied using stochastic nonlinear Schrödinger equation simulations. The conditions under which sub-5 fs pulses can be obtained after compression are identified. © 2004 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase coherence of supercontinuum generation in microstructure fiber is quantified by performing a Young's type interference experiment between independently generated supercontinua from two separate fiber segments. Analysis of the resulting interferogram yields the wavelength dependence of the magnitude of the mutual degree of coherence, and a comparison of experimental results with numerical simulations suggests that the primary source of coherence degradation is the technical noise-induced fluctuations in the injected peak power. © 2003 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations are used to study the temporal and spectral characteristics of broadband supercontinua generated in photonic crystal fiber. In particular, the simulations are used to follow the evolution with propagation distance of the temporal intensity, the spectrum, and the cross-correlation frequency resolved optical gating (XFROG) trace. The simulations allow several important physical processes responsible for supercontinuum generation to be identified and, moreover, illustrate how the XFROG trace provides an intuitive means of interpreting correlated temporal and spectral features of the supercontinuum. Good qualitative agreement with preliminary XFROG measurements is observed. © 2002 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental and theoretical investigations of the highly nonlinear and broadband noise that exists on supercontinuum spectra generated from launching femtosecond Ti:Sapphire pulses into microstructure fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercontinua generated in microstructure fiber can exhibit significant excess amplitude noise. We present experimental and numerical studies of the origins of this excess noise and its dependence on the input laser pulse parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband supercontinuum spectra are generated in a microstructured fiber using femtosecond laser pulses. Noise properties of these spectra are studied through experiments and numerical simulations based on a generalized stochastic nonlinear Schrödinger equation. In particular, the relative intensity noise as a function of wavelength across the supercontinuum is measured over a wide range of input pulse parameters, and experimental results and simulations are shown to be in good quantitative agreement. For certain input pulse parameters, amplitude fluctuations as large as 50% are observed. The simulations clarify that the intensity noise on the supercontinuum arises from the amplification of two noise inputs during propagation - quantum-limited shot noise on the input pulse, and spontaneous Raman scattering in the fiber. The amplification factor is a sensitive function of the input pulse parameters. Short input pulses are critical for the generation of very broad supercontinua with low noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schrödinger equation, finding good quantitative agreement over a range of input-pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input-pulse shot noise and the spontaneous Raman scattering down the fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thanks to a passive cavity configuration, modulational instability in fibers is successfully observed, for the first time to our knowledge, in the continuous-wave regime. Our technique provides a new means of generating all-optically ultrahigh-repetition-rate pulse trains and opens up new possibilities for the fundamental study of modulational instability and related phenomena. © 2001 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder is often used as an adhesive to attach optical fibers to a circuit board. In this proceeding we will discuss efforts to model the motion of an optical fiber during the wetting and solidification of the adhesive solder droplet. The extent of motion is determined by several competing forces, during three “stages” of solder joint formation. First, capillary forces of the liquid phase control the fiber position. Second, during solidification, the presence of the liquid-solid-vapor triple line as well as a reduced liquid solder volume leads to a change in the net capillary force on the optical fiber. Finally, the solidification front itself impinges on the fiber. Publicly-available finite element models are used to calculate the time-dependent position of the solidification front and shape of the free surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slurries with high penetrability for production of Self-consolidating Slurry Infiltrated Fiber Concrete (SIFCON) were investigated in this study. Factorial experimental design was adopted in this investigation to assess the combined effects of five independent variables on mini-slump test, plate cohesion meter, induced bleeding test, J-fiber penetration test and compressive strength at 7 and 28 days. The independent variables investigated were the proportions of limestone powder (LSP) and sand, the dosages of superplasticiser (SP) and viscosity agent (VA), and water-to-binder ratio (w/b). A two-level fractional factorial statistical method was used to model the influence of key parameters on properties affecting the behaviour of fresh cement slurry and compressive strength. The models are valid for mixes with 10 to 50% LSP as replacement of cement, 0.02 to 0.06% VA by mass of cement, 0.6 to 1.2% SP and 50 to 150% sand (% mass of binder) and 0.42 to 0.48 w/b. The influences of LSP, SP, VA, sand and W/B were characterised and analysed using polynomial regression which identifies the primary factors and their interactions on the measured properties. Mathematical polynomials were developed for mini-slump, plate cohesion meter, J-fiber penetration test, induced bleeding and compressive strength as functions of LSP, SP, VA, sand and w/b. The estimated results of mini-slump, induced bleeding test and compressive strength from the derived models are compared with results obtained from previously proposed models that were developed for cement paste. The proposed response models of the self-consolidating SIFCON offer useful information regarding the mix optimization to secure a highly penetration of slurry with low compressive strength