897 resultados para Exercise performance
Resumo:
The present study investigated the relationship between plasma potassium ion concentration ([K+]) and skeletal muscle torque during three different 15-min recovery periods after fatigue induced by four 30-s sprints. Four males and one female completed the multiple sprint exercise on three separate days; recovery was passive, i.e. no cycling exercise (PRec), active cycling at 30% peak oxygen consumption (V) over dot(2peak) (30% Rec) and active cycling at 60% (V) over dot(2peak) (60% Rec). Plasma [K+] was measured from blood sampled from an antecubital vein of subjects at rest and at 0, 3, 5, 10 and 15 min into each recovery. Isokinetic leg strength was measured at rest and at 1, 6, 11 and 16 min during each recovery. Following the exhaustive sprints; [K+] increased significantly from an average mean (SEM) resting value of 3.81 (0.07) mmol.l(-1) to 4.48 (0.19) mmol.l(-1) (P < 0.01). In all recovery conditions, plasma [K+] returned to resting levels within 3 min following the fourth sprint. However, in the two active recovery conditions plasma [K+] increased over the remainder of the recovery periods to 4.36 (0.12) mmol.l(-1) in the 30% Rec condition and 4.62 (0.12) mmol.l(-1) in the 60% Rec condition, the latter being significantly higher than the former (P < 0.01). The maximum torque measured following the sprints decreased significantly, on average, to 61.1 (8.36)% of peak levels (P < 0.01). After 15 min of recovery, maximum torque was highest in the 30% Rec condition at 92.13 (3.06)% of peak levels (P < 0.01), compared to 85.23 (3.64)% and 85.71 (0.82)% for the PRec and 60% Rec conditions, respectively. In contrast to the significant differences in plasma [K+] across all three recovery conditions, muscle torque recovery was significantly different in only the 30% Rec condition. In summary, recovery of peak levels of muscle torque following fatiguing exercise does not appear to follow changes in plasma [K+].
Resumo:
In a program of laboratory and field research over the last decade, the author has replicated and extended the attribution model of leadership (Green & Mitchell, 1979). This paper reports a cross-national test of the model, in which 172 Australian and 144 Canadian work supervisors' recalled their attributional and evaluative responses to high and low levels of subordinate performance. It was expected that the supervisors' responses would conform to the predictions established in the earlier studies, but that there would be key differences across the cultures. In particular, Australians were expected to endorse more internal attributions for subordinate performance than Canadians, and to focus more on individual characteristics in evaluating performance. Results supported the model's robustness and the hypothesised cross-national differences. The implications of these results are discussed in terms of crosscultural research opportunities, and the need to take account of small but potentially important differences in supervisory styles across cultures.
Resumo:
Background: Studies have investigated the influence of neuromuscular electrostimulation on the exercise/muscle capacity of patients with heart failure (HF), but the hemodynamic overload has never been investigated. The aim of our study was to evaluate the heart rate (HR), systolic and diastolic blood pressures in one session of strength exercises with and without neuromuscular electrostimulation (quadriceps) in HF patients and in healthy subjects. Methods: Ten (50% male) HF patients and healthy subjects performed three sets of eight repetitions with and without neuromuscular electrostimulation randomly, with one week between sessions. Throughout, electromyography was performed to guarantee the electrostimulation was effective. The hemodynamic variables were measured at rest, again immediately after the end of each set of exercises, and during the recovery period. Results: Systolic and diastolic blood pressures did not change during each set of exercises among either the HF patients or the controls. Without electrostimulation: among the controls, the HR corresponding to the first (85 +/- 13 bpm, p = 0.002), second (84 +/- 10 bpm, p < 0.001), third (89 +/- 17, p < 0.001) sets and recuperation (83 +/- 16 bpm, p = 0.012) were different compared to the resting HR (77 bpm). Moreover, the recuperation was different to the third set (0.018). Among HF patients, the HR corresponding to the first (84 +/- 9 bpm, p = 0.041) and third (84 +/- 10 bpm, p = 0.036) sets were different compared to the resting HR (80 +/- 7 bpm), but this increase of 4 bpm is clinically irrelevant to HF. With electrostimulation: among the controls, the HR corresponding to the third set (84 +/- 9 bpm) was different compared to the resting HR (80 +/- 7 bmp, p = 0.016). Among HF patients, there were no statistical differences between the sets. The procedure was well tolerated and no subjects reported muscle pain after 24 hours. Conclusions: One session of strength exercises with and without neuromuscular electrostimulation does not promote a hemodynamic overload in HF patients. (Cardiol J 2011; 18,1: 39-46)
Resumo:
Introduction. The quality and effectiveness of myocardial protection are fundamental problems to expand the use of and consequently good outcomes of donated hearts for transplantation. Objective. The purpose of this investigation was to compare the cardioprotective effects of Krebs-Henseleit, Bretschneider-HTK, St Thomas, and Celsior solutions using a modified nonrecirculating Langendorff column model of isolated perfused rat heart during prolonged cold storage. Materials and Methods. After removal 36 rat hearts underwent isolated perfusion into a Langendorff apparatus using Krebs-Henseleit solution for a 15-minute period of recovery; we excluded organs that did not maintain an aortic pressure above 100 m Hg. Subsequently, we equally distributed the hearts into four groups according to the cardioprotection solution; group 1, Krebs-Henseleit (control); group II, Bretschneider-HTK; group III, St Thomas; and group IV, Celsior. Each heart received the specific cardioplegic solution at 10 C for 2-hour storage at 20 C, before a 15 minutes perfusion with Krebs-Henseleit solution for recovery and stabilization. After 60 additional minutes of perfusion, every 5 minutes we determined heart rate (HR), coronary flow (CF), left ventricular systolic pressure (LVSP), and positive and negative peak of the first derivative of left ventricular pressure (+dP/dt and dP/dt, respectively). Results. Comparative analysis by Turkey`s test showed the following performances among the groups at 60 minutes of reperfusion: HR: II = IV > III > I; CF: II = IV > I = III; LVSP: IV > I = II = III; +dP/dt: IV > I = II = III; and dP/dt: IV = II > I = II. Conclusion. Cardioprotective solutions generally used in clinical practice are not able to avoid hemodynamic alterations in hearts exposed to prolonged ischemia. Celsior solution showed better performance than Bretschneider-HTK, St Thomas, and Krebs-Henseleit.
Resumo:
Exercise training has an important role in the prevention and treatment of hypertension, but its effects on the early metabolic and hemodynamic abnormalities observed in normotensive offspring of hypertensive parents (FH+) have not been studied. We compared high-intensity interval (aerobic interval training, AIT) and moderate-intensity continuous exercise training (CMT) with regard to hemodynamic, metabolic and hormonal variables in FH+ subjects. Forty-four healthy FH+ women (25.0+/-4.4 years) randomized to control (ConFH+) or to a three times per week equal-volume AIT (80-90% of VO(2MAX)) or CMT (50-60% of VO(2MAX)) regimen, and 15 healthy women with normotensive parents (ConFH-; 25.3+/-3.1 years) had their hemodynamic, metabolic and hormonal variables analyzed at baseline and after 16 weeks of follow-up. Ambulatorial blood pressure (ABP), glucose and cholesterol levels were similar among all groups, but the FH+ groups showed higher insulin, insulin sensitivity, carotid-femoral pulse wave velocity (PWV), norepinephrine and endothelin-1 (ET-1) levels and lower nitrite/ nitrate (NOx) levels than ConFH- subjects. AIT and CMT were equally effective in improving ABP (P<0.05), insulin and insulin sensitivity (P<0.001); however, AIT was superior in improving cardiorespiratory fitness (15 vs. 8%; P<0.05), PWV (P<0.01), and BP, norepinephrine, ET-1 and NOx response to exercise (P<0.05). Exercise intensity was an important factor in improving cardiorespiratory fitness and reversing hemodynamic, metabolic and hormonal alterations involved in the pathophysiology of hypertension. These findings may have important implications for the exercise training programs used for the prevention of inherited hypertensive disorder. Hypertension Research (2010) 33, 836-843; doi:10.1038/hr.2010.72; published online 7 May 2010
Resumo:
Exercise is an effective intervention for treating hypertension and arterial stiffness, but little is known about which exercise modality is the most effective in reducing arterial stiffness and blood pressure in hypertensive subjects. Our purpose was to evaluate the effect of continuous vs. interval exercise training on arterial stiffness and blood pressure in hypertensive patients. Sixty-five patients with hypertension were randomized to 16 weeks of continuous exercise training (n=26), interval training (n=26) or a sedentary routine (n=13). The training was conducted in two 40-min sessions a week. Assessment of arterial stiffness by carotid-femoral pulse wave velocity (PWV) measurement and 24-h ambulatory blood pressure monitoring (ABPM) were performed before and after the 16 weeks of training. At the end of the study, ABPM blood pressure had declined significantly only in the subjects with higher basal values and was independent of training modality. PWV had declined significantly only after interval training from 9.44 +/- 0.91 to 8.90 +/- 0.96 m s(-1), P=0.009 (continuous from 10.15 +/- 1.66 to 9.98 +/- 1.81 m s(-1), P-ns; control from 10.23 +/- 1.82 to 10.53 +/- 1.97 m s(-1), P-ns). Continuous and interval exercise training were beneficial for blood pressure control, but only interval training reduced arterial stiffness in treated hypertensive subjects. Hypertension Research (2010) 33, 627-632; doi:10.1038/hr.2010.42; published online 9 April 2010
Resumo:
Background: Several factors have been implicated in the high-mortality rate of posttraumatic pneumonectomy. In this study, we evaluated the hemodynamic and echocardiographic changes induced by pneumonectomy and fluid resuscitation after hemorrhagic shock. Methods: Fourteen dogs were bled to a target mean arterial pressure of 40 mmHg. The animals were assigned to two groups: control (no fluid resuscitation) and lactated Ringer`s (3 x shed blood volume). The left pulmonary hilum was cross clamped, and the animals were observed for 60 minutes. Systemic hemodynamics was evaluated using Swan-Ganz, arterial catheter, and ultrasonic flow probe. Systemic O(2)-derived variables were calculated. Ejection fraction was determined by two-dimensional echocardiography. Results: Fluid resuscitation improved the mean arterial pressure and systemic oxygen delivery. After pneumonectomy, no significant increase in right ventricular pressure was observed in the LR group. No signs of major ventricular dilation or changes in arterial oxygenation were observed. Conclusion: Our data suggest that pneumonectomy is not associated with early pulmonary hypertension; gentle fluid resuscitation improves cardiovascular performance and is not associated with an increase in right ventricular pressure.
Resumo:
Exercise training has been shown to be effective in improving exercise capacity and quality of life in patients with heart failure and left ventricular (LV) systolic dysfunction. Real-time myocardial contrast echocardiography (RTMCE) is a new technique that allows quantitative analysis of myocardial blood flow (MBF). The aim of this study was to determine the effects of exercise training on MBF in patients with LV dysfunction. We studied 23 patients with LV dysfunction who underwent RTMCE and cardiopulmonary exercise testing at baseline and 4 months after medical treatment (control group, n = 10) or medical treatment plus exercise training (trained group, n = 13). Replenishment velocity (0) and MBF reserves were derived from quantitative RTMCE. The 4-month exercise training consisted of 3 60-minute exercise sessions/week at an intensity corresponding to anaerobic threshold, 10% below the respiratory compensation point. Aerobic exercise training did not change LV diameters, volumes, or ejection fraction. At baseline, no difference was observed in MBF reserve between the control and trained groups (1.89, 1.67 to 1.98, vs 1.81, 1.28 to 2.38, p = 0.38). Four-month exercise training resulted in a significant increase in beta reserve from 1.72 (1.45 to 1.48) to 2.20 (1.69 to 2.77, p <0.001) and an MBF reserve from 1.81 (1.28 to 2.38) to 3.05 (2.07 to 3.93, p <0.001). In the control group, 13 reserve decreased from 1.51 (1.10 to 1.85) to 1.46 (1.14 to 2.33, p = 0.03) and MBF reserve from 1.89 (1.67 to 1.98) to 1.55 (1.11 to 2.27, p <0.001). Peak oxygen consumption increased by 13.8% after 4 months of exercise training and decreased by 1.9% in the control group. In conclusion, exercise training resulted in significant improvement of MBF reserve in patients with heart failure and LV dysfunction. (C) 2010 Elsevier Inc. All rights reserved. (Am J Cardiol 2010;105:243-248)
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).
Resumo:
In recent years, beta-blocker therapy has become a primary pharmacologic intervention in patients with heart failure by blocking the sympathetic activity. To compare the exercise training`s sympathetic blockade in healthy subjects (athletes) and the carvedilol`s sympathetic blockade in sedentary heart failure patients by the evaluation of the heart rate dynamic during an exercise test. A total of 26 optimized and 49 nonoptimized heart failure patients in a stable condition (for, at least, 3 months), 15 healthy athletes and 17 sedentary healthy subjects were recruited to perform a cardiopulmonary exercise test. The heart rate dynamic (rest, reserve, peak and the peak heart rate in relation to the maximum predicted for age) was analyzed and compared between the four groups. The heart rate reserve was the same between optimized (48 +/- 15) and nonoptimized (49 +/- 18) heart failure patients (P < 0.0001). The athletes (188 +/- 9) showed a larger heart rate reserve compared to sedentary healthy subjects (92 +/- 10, P < 0.0001). Athletes and healthy sedentary reached the maximum age-predicted heart ratefor their age, but none of the heart failure patients did. The carvedilol`s sympathetic blockade occurred during the rest and during the peak effort in the same proportion, but the exercise training`s sympathetic blockade in healthy subjects occurred mainly in the rest.
Resumo:
We compared the effects of exercise training on neurovascular control and functional capacity in men and women with chronic heart failure (HF). Forty consecutive HF outpatients from the Heart Institute, University of Sao Paulo, Brazil were divided into the following four groups matched by age: men exercise-trained (n = 12), men untrained (n = 10), women exercise-trained (n = 9), women untrained (n = 9). Maximal exercise capacity was determined from a maximal progressive exercise test on a cycle ergometer. Forearm blood flow was measured by venous occlusion plethysmography. Muscle sympathetic nerve activity (MSNA) was recorded directly using the technique of microneurography. There were no differences between groups in any baseline parameters. Exercise training produced a similar reduction in resting MSNA (P = 0.000002) and forearm vascular resistance (P = 0.0003), in men and women with HF. Peak VO(2) was similarly increased in men and women with HF (P = 0.0003) and VE/VCO(2) slope was significantly decreased in men and women with HF (P = 0.0007). There were no significant changes in left-ventricular ejection fraction in men and women with HF. The benefits of exercise training on neurovascular control and functional capacity in patients with HF are independent of gender.
Resumo:
Background: A previous study associated CD34(+) levels with NYHA functional class in heart failure patients. The aim of this study was to correlate CD34(+) levels to exercise capacity, functional class, quality of life and norepinephrine in heart failure patients. Methods: Twenty three sedentary patients (52 +/- 7 years, 78% male) answered the Minnesota Living with Heart Failure Questionnaire and rested for 20 minutes before an investigator collect a blood sample. After this, patients performed a cardiopulmonary exercise test to determine the heart rate at anaerobic and ventilatory threshold and oxygen consumption at peak effort, at anaerobic and ventilatory threshold. One other blood sample was collected during the peak effort to investigate the norepinephrine and CD34(+) levels. Results: Rest percentage of CD34(+) did not show correlation with: left ventricle ejection fraction (r = 0.03, p = 0.888), peakVO(2) (r = 0.32, p = 0.13), VO(2) at anaerobic threshold (VO(2)AT) (r = 0.03, p = 0.86), VO(2) at ventilatory threshold (VO(2)VT) (r = 0.36, p = 0.08), NYHA functional class (r = -0.2, p = 0.35), quality of life (Minnesota) (r = -0.17, p = 0.42). CD34(+) did not show correlation, either, with: peak VO(2) (r = 0.38, p = 0.06), VO(2)AT (r = 0.09, p = 0.65), VO(2)VT (r = 0.43, p = 0.4), NYHA functional class (r = -0.13, p = 0.54), quality of life (r = 0.00, p = 0.99). Conclusions: CD34(+) levels did not correlate with exercise capacity, functional class, quality of life and norepinephrine. Percentage of CD34(+) levels did not increase during the cardiopulmonary exercise test in heart failure patients. (Cardiol J 2009; 16, 5: 426-431)
Resumo:
Study Objectives: To test the effects of exercise training on sleep and neurovascular control in patients with systolic heart failure with and without sleep disordered breathing. Design: Prospective interventional study. Setting: Cardiac rehabilitation and exercise physiology unit and sleep laboratory. Patients: Twenty-five patients with heart failure, aged 42 to 70 years, and New York Heart Association Functional Class I-III were divided into 1 of 3 groups: obstructive sleep apnea (n = 8), central sleep apnea (n 9) and no sleep apnea (n = 7). Interventions: Four months of no-training (control) followed by 4 months of an exercise training program (three 60-minute, supervised, exercise sessions per week). Measures and Results: Sleep (polysomnography), microneurography, forearm blood flow (plethysmography), peak VO(2). and quality of life were evaluated at baseline and at the end of the control and trained periods. No significant changes occurred in the control period. Exercise training reduced muscle sympathetic nerve activity (P < 0.001) and increased forearm blood flow (P < 0.01), peak VO(2) (P < 0.01), and quality of life (P < 0.01) in all groups, independent of the presence of sleep apnea. Exercise training improved the apnea-hypopnea index, minimum O(2) saturation, and amount stage 3-4 sleep (P < 0.05) in patients with obstructive sleep apnea but had no significant effects in patients with central sleep apnea. Conclusions. The beneficial effects of exercise training on neurovascular function, functional capacity, and quality of life in patients with systolic dysfunction and heart failure occurs independently of sleep disordered breathing. Exercise training lessens the severity of obstructive sleep apnea but does not affect central sleep apnea in patients with heart failure and sleep disordered breathing.
Resumo:
Endomyocardial fibrosis (EMF) is a restrictive cardiomyopathy manifested mainly by diastolic heart failure. It is recognized that diastole is an important determinant of exercise capacity. The purpose of this study was to determine whether resting echocardiographic parameters might predict oxygen consumption (VO(2p)) by ergoespirometry and the prognostic role of functional capacity in EMF patients. A total of 32 patients with biventricular EMF (29 women, 55.3 +/- 11.4 years) were studied by echocardiography and ergoespirometry. The relationship between the echocardiographic indexes and the percentage of predicted VO(2p) (%VO(2p)) was investigated by the `stepwise` linear regression analysis. The median VO(2p) was 11 +/- 3 mL/kg/min and the %VO(2p) was 53 +/- 9%. There was a correlation of %VO(2p) with an average of A` at four sites of the mitral annulus (A` peak, r = 0.471, P = 0.023), E`/A` of the inferior mitral annulus (r = -0.433, P = 0.044), and myocardial performance index (r = -0.352, P = 0.048). On multiple regression analysis, only A` peak was an independent predictor of %VO(2p) (%VO(2p)= 26.34 + 332.44 x A` peak). EMF patients with %VO(2p)< 53% had an increased mortality rate with a relative risk of 8.47. In EMF patients, diastolic function plays an important role in determining the limitations to exercise and %VO(2p) has a prognostic value.
Resumo:
Background: Despite antihypertensive therapy, it is difficult to maintain optimal systemic blood pressure (BP) values in hypertensive patients (HPT). Exercise may reduce BP in untreated HPT. However, evidence regarding its effect in long-term antihypertensive therapy is lacking. Our purpose was to evaluate the acute effects of 40-minute continuous (CE) or interval exercise (IE) using cycle ergometers on BP in long-term treated HPT. Methods: Fifty-two treated HPT were randomized to CE (n=26) or IE (n=26) protocols. CE was performed at 60% of reserve heart rate (HR). IE alternated consecutively 2 min at 50% reserve HR with 1 min at 80%. Two 24-h ambulatory BP monitoring were made after exercise (postexercise) or a nonexercise control period (control) in random order. Results: CE reduced mean 24-h systolic (S) BP (2.6 +/- 6.6 mm Hg, p-0.05) and diastolic (D) BP (2.3 +/- 4.6, p-0.01), and nighttime SBP (4.8 +/- 6.4, p < 0.001) and DBP (4.6 +/- 5.2 mm Hg, p-0.001). IE reduced 24-h SBP (2.8 +/- 6.5, p-0.03) and nighttime SBP (3.4 +/- 7.2, p-0.02), and tended to reduce nighttime DBP (p=0.06). Greater reductions occurred in higher BP levels. Percentage of normal ambulatory BP values increased after CE (24-h: 42% to 54%; daytime: 42% to 61%; nighttime: 61% to 69%) and IE (24-h: 31% to 46%; daytime: 54% to 61%; nighttime: 46% to 69%). Conclusion: CE and IE reduced ambulatory BP in treated HPT, increasing the number of patients reaching normal ambulatory BP values. These effects suggest that continuous and interval aerobic exercise may have a role in BP management in treated HPT. (c) 2008 Elsevier Ireland Ltd. All rights reserved.