893 resultados para Exchange rate misalignment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates how macroeconomic news announcements affect jumps and cojumps in foreign exchange markets, especially under different business cycles. We use 5-min interval from high frequency data on Euro/Dollar, Pound/Dollar and Yen/Dollar from Nov. 1, 2004 to Feb. 28, 2015. The jump detection method was proposed by Andersen et al. (2007c), Lee & Mykland (2008) and then modified by Boudt et al. (2011a) for robustness. Then we apply the two-regime smooth transition regression model of Teräsvirta (1994) to explore news effects under different business cycles. We find that scheduled news related to employment, real activity, forward expectations, monetary policy, current account, price and consumption influences forex jumps, but only FOMC Rate Decisions has consistent effects on cojumps. Speeches given by major central bank officials near a crisis also significantly affect jumps and cojumps. However, the impacts of some macroeconomic news are not the same under different economic states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations on the water relations and gas exchange of/tcacia aun'culiji_2rmis were carried out in natural and controlled environments. The experiments were performed in both seedlings and five year old trees. Different sets of experiments were conducted in Acacia plantations, at Kothachira, Palakkad District and in .seedlings, at KFRI campus nursery mainly during the summer months. Investigations were also extended to seedlings of A.mangium, Aaulacocarpa and /Lholocericea, which are also phyllodinous species with the intention of comparing their physiology with Acacia auriculifomus. Potted seedlings of four species of Acacia viz., A. auriculi/E)/7r:i.r, /I. aulacocarpa, A. holocericea and A. mangium were used for the study. Measurements of relative water content (RWC), water potential, photosynthetic rate, transpiration, stomatal conductance, water use efficiency etc. of phyllodes were measured diumally in plants subjected to three stress conditions namely, drought, salinity and flooding

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Professor Irma Glicman Adelman, an Irish Economist working in California University at Berkely, in her research work on ‘Development Over Two Centuries’, which is published in the Journal of Evolutionary Economics, 1995, has identified that India, along with China, would be one of the largest economies in this 21st Century. She has stated that the period 1700 - 1820 is the period of Netherlands, the period 1820 - 1890 is the period of England the period 1890 - 2000 is the period of America and this 21st Century is the century of China and India. World Bank has also identified India as one of the leading players of this century after China. India will be third largest economy after USA and China. India will challenge the Global Economic Order in the next 15 years. India will overtake Italian economy in 2015, England economy in 2020, Japan economy in 2025 and USA economy in 2050 (China will overtake Japan economy in 2016 and USA economy in 2027). India has the following advantages compared with other economies. India is 4th largest GDP in the world in terms of Purchasing Power. India is third fastest growing economy in the world after China and Vietnam. Service sector contributes around 57% of GDP. The share of agriculture is around 17% and Manufacture is 16% in 2005 - 2006. This is a character of a developed country. Expected GDP growth rate is 10% shortly (It has come down from 9.2% in 2006 - 2007 to 6.2% during 2008 - 2009 due to recession. It is only a temporary phenomenon). India has $284 billion as Foreign Exchange Reserve as on today. India had just $1 billion as Foreign Exchange Reserve when it opened its economy in the year 1991. In this research paper an attempt has been made to study the two booming economies of the globe with respect to their foreign exchange reserves. This study mainly based on secondary data published by respective governments and various studies done on this area

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is growing evidence that the interocean exchange south of Africa is an important link in the global overturning circulation of the ocean, the so‐called ocean conveyer belt. At this location, warm and salty Indian Ocean waters enter the South Atlantic and are pulled by currents that eventually reach the North Atlantic, where water cools and sinks. A major contributor to the exchange is the frequent shedding of ring eddies from the termination of the Agulhas Current south of the tip of Africa. This shedding is controlled by developments far upstream in the Indian Ocean, and variations in this ‘Agulhas Leakage’ can lead to changes in the rate and stability of the Atlantic overturning, with possible associated global climate variations [Weijer et al., 1999]. Regional climate variations in the tropical and subtropical Indian Ocean are known to affect the whole system of the Agulhas Current, including the interocean exchanges. This article reports on some of the seminal results of ongoing multinational, multidisciplinary projects that explore these issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved studies of chlorosilylene, CISiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane, Me3SiH, in the gas phase. The reaction was studied at total pressures up to 100 torr (with and without added SF6) over the temperature range 297-407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-13.97 +/- 0.25) + (12.57 +/- 1.64) kJ mol(-1)/RT In 10. The Arrhenius parameters are consistent with a mechanism involving an intermediate complex, whose rearrangement is the rate-determining step. Quantum chemical calculations of the potential energy surface for this reaction and also the reactions of CISiH with SiH4 and the other methylsilanes support this conclusion. Comparisons of both experiment and theory with the analogous Si-H insertion processes of SiH2 and SiMe2 show that the main factor causing the lower reactivity of ClSiH is the secondary energy barrier. The calculations also show the existence of a novel intramolecular H-atom exchange process in the complex of ClSiH with MeSiH3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper builds upon previous research on currency bands, and provides a model for the Colombian peso. Stochastic differential equations are combined with information related to the Colombian currency band to estimate competing models of the behaviour of the Colombian peso within the limits of the currency band. The resulting moments of the density function for the simulated returns describe adequately most of the characteristics of the sample returns data. The factor included to account for the intra-marginal intervention performed to drive the rate towards the Central Parity accounts only for 6.5% of the daily change, which supports the argument that intervention, if performed by the Central Bank, it is not directed to push the currency towards the limits. Moreover, the credibility of the Colombian Central Bank, Banco de la República’s ability to defend the band seems low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exchange between the open ocean and sub-ice shelf cavities is important to both water mass transformations and ice shelf melting. Here we use a high-resolution (500 m) numerical model to investigate to which degree eddies produced by frontal instability at the edge of a polynya are capable of transporting dense High Salinity Shelf Water (HSSW) underneath an ice shelf. The applied surface buoyancy flux and ice shelf geometry is based on Ronne Ice Shelf in the southern Weddell Sea, an area of intense wintertime sea ice production where a flow of HSSW into the cavity has been observed. Results show that eddies are able to enter the cavity at the southwestern corner of the polynya where an anticyclonic rim current intersects the ice shelf front. The size and time scale of simulated eddies are in agreement with observations close to the Ronne Ice Front. The properties and strength of the inflow are sensitive to the prescribed total ice production, flushing the ice shelf cavity at a rate of 0.2–0.4 × 106 m3 s−1 depending on polynya size and magnitude of surface buoyancy flux. Eddy-driven HSSW transport into the cavity is reduced by about 50% if the model grid resolution is decreased to 2-5 km and eddies are not properly resolved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report in this paper the occurrence of potential oscillations in a proton exchange membrane fuel cell (PEMFC) with a Pd-Pt/C anode, fed with H(2)/100 ppm CO, and operated at 30 degrees C. We demonstrate that the use of Pd-Pt/C anode enables the emergence of dynamic instabilities in a PEMFC. Oscillations are characterized by the presence of very high oscillation amplitude, ca. 0.8 V. which is almost twice that observed in a PEMFC with a Pt-Ru/C anode under similar conditions. The effects of the H(2)/CO flow rate and cell current density on the oscillatory dynamics were investigated and the mechanism rationalized in terms of the CO oxidation and adsorption processes. We also discuss the fundamental aspects concerning the operation of a PEMFC under oscillatory regime in terms of the benefit resulting from the higher average power output. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using ‘low-frequency’ volatility extracted from aggregate volatility shocks in interest rate swap (hereafter, IRS) market, this paper investigates whether Japanese yen IRS volatility can be explained by macroeconomic risks. The analysis suggests that this low-frequency yen IRS volatility has strong and positive association with most of the macroeconomic risk proxies (e.g., volatility of consumer price index, industrial production volatility, foreign exchange volatility, slope of the term structure and money supply) with the exception of the unemployment rate, which is negatively related to IRS volatility. This finding is fairly consistent with the argument that the greater the macroeconomic risk the greater is the use of derivative instruments to hedge or speculate. The relationship between the macroeconomic risks and IRS volatility varies slightly across the different swap maturities but is robust to alternative volatility specifications. This linkage between swap market and macroeconomy has practical implications since market makers and hedgers use the swap rate as benchmark for pricing long-term interest rates, corporate bonds and various other securities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240 μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2 μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240. μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2. μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between mass loss rate and chemical power in flying birds is analysed with regard to water and heat balance. Two models are presented: the first model is applicable to situations where heat loads are moderate. i.e. when heat balance can be achieved by regulating non-evaporative heat loss, and evaporative water loss is minimised. The second model is applicable when heat loads are high, non-evaporative heat loss is maximised. and heat balance has to be achieved by regulating evaporative heat loss. The rates of mass loss of two Thrush Nightingales Luscinia luscinia and one Teal Anas crecca were measured at various flight speeds in a wind tunnel. Estimates of metabolic water production indicate that the Thrush Nightingales did not dehydrate during experimental flights. Probably, the Thrush Nightingales maintained heat balance without actively increasing evaporative cooling. The Teal, however, most likely had to resort to evaporative cooling, although it may not have dehydrated. Chemical power was estimated from our mass loss rate data using the minimum evaporation model for the Thrush Nightingales and the evaporative heat regulation model for the Teal. For both Thrush Nightingales and the Teal, the chemical power calculated from our mass loss rate data showed a greater change with speed (more 'U-shaped' curve) than the theoretically predicted chemical power curves based on aerodynamic theory. The minimum power speeds calculated from our data differed little from theoretical predictions but maximum range speeds were drastically different. Mass loss rate could potentially be used to estimate chemical power in flying birds under laboratory conditions where temperature and humidity are controlled. However, the assumptions made in the models and the model predictions need further testing.