921 resultados para Exchange of publications


Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the International Indian Ocean Expedition (1964/65) sediment cores were taken on six profiles off the western coast of the Indian Subcontinent. These profiles run approximately perpendicular to the coast, from the deep-sea over the continental slope to the continental shelf. Additional samples and cores were taken in a dense pattern in front of the delta of the Indus River. This pattern of sampling covered not only marine sediments, but also river and beach sediments in Pakistan. The marine samples were obtained with piston, gravity and box corers and by a Van Veen grab sampler. The longest piston core is about 5 meters long. 1. Distribution of the elements on the sediment surface The area of maximal carbonate values (aprox. 80-100% CaCO3) essentially coincides with the continental shelf. The highest Sr values were observed largely within this area, but only in the vicinity of the Gulf of Cambay. Mainly the aragonitic coprolites are responsible for those high Sr contents. The Mg contents of the carbonates are comparatively low; surprisingly enough the highest Mg concentrations were also measured in the coprolites. The maximum contents of organic matter (Core) were found along the upper part of the continental slope. They coincide with the highest porosity and water content of the sediments. Frequently the decomposition of organic matter by oxydation is responsible for the measured Corg contents. On the other side the quantity of originally deposited organic material is less important in most cases. The enrichment of the "bauxitophile" elements Fe, Ti, Cr and V in the carbonate- and quartz-free portions of the sediments is essentially due to the influence of coarse terrigenous detritus. For the elements Mn, Ni and Cu (in per cent of the carbonateand quartz-free sediment) a strong enrichment was observed in the deep-sea realm. The strong increase in Mn toward the deep-sea is explained by authigenesis of Mn-Fe-concretions. Mn-nodules form only under oxydizing conditions which obviously are possible only at very low rates of deposition. The Mg, B and, probably also Mn contents in the clay minerals increase with increasing distance from the continent. This can be explained by the higher adsorption of those elements from sea water because of increasing duration of the clay mineral transport. The comparison of median contents of some elements in our deep-sea samples with deep-sea sediments described by TUREKIAN & WEDEPOHL (1961) shows that clear differences in concentration exist only in the case of "bauxitophile" elements Cr and Be. The Cr and Be contents show a clear increase in the Indian Ocean deep-sea samples compared to those described by TUREKIAn & WEDEPOHL (1961) which can obviously be attributed to the enrichment in the lateritic and bauxitic parent rocks. The different behaviour of the elements Fe, Ti and Mn during decomposition of the source rocks, transport to the sea and during oxydizing and reducing conditions in the marine environment can be illustrated by Ti02/Fe and MnO/Fe ratios. The different compositions of the sediments off the Indus Delta and those of the remaining part of the area investigated are characterized by a different distribution of the elements Mn and Ti. 2. Chemical inhomogenities in the sediments Most longer cores show 3 intervals defined by chemical and sedimentological differences. The top-most interval is coarse-grained, the intermedial interval is fine grained and the lower one again somewhat coarser. At the same time it is possible to observe differences from interval to interval in the organogenic and detrital constituents. During the formation of the middle interval different conditions of sedimentation from those active during the previous and subsequent periods have obviously prevailed. Looking more closely at the organogenic constituents it is remarkable that during the formation of the finer interval conditions of a more intensive oxydation have prevailed that was the case before and after: Core decreases, whereas P shows a relative increase. This may be explained by slower sedimentation rate or by a vertical migration of the oxygen rich zone of the sea-water. The modifications of the elements from minerals in detrital portion of the sediments support an explanation ascribing this fact to modifications of the conditions of denudation and transportation which can come about through a climatic change or through tectonic causes. The paleontological investigations have shown (ZOBEL, in press) that in some of the cores the middle stratum of fine sedimentation represents optimal conditions for organic life. This fact suggests also oxydizing conditions during the sedimentation of this interval. In addition to the depositional stratification an oxydation zone characterized by Mn-enrichment can be recognized. The thickness of the oxidation zone decreases towards the coast and thins out along the middle part of the continental slope. At those places, where the oxydation zone is extremely thin, enrichment of Mn has its maximum. This phenomenon can probably be attributed to the migration of Mn taking place in its dissociated form within the sediment under reducing conditions. On the other side this Mn-migration in the sediment does not take place in the deep-sea, where oxydizing conditions prevail. 3. Interstitial waters in the sediments Already at very small core depths, the interstitial waters have undergone a distinct modification compared with the overlying sea water. This distinct modification applies both to total salinity and to the individual ions. As to the beginning of diagenesis the following conclusions can be drawn: a) A strong K-increase occurs already at an early stage. It may be attributable to a diffusion barrier or to an exchange of Mg-ions on the clays. Part of this increase may also originate from the decomposition of K-containing silicates (mica and feldspars). A K-decrease owing to the formation of illite (WEAVER 1967), however, occurs only at much greater sediment depth. b) Because of an organic protective coating, the dissolution of carbonate is delayed in recent organogenic carbonates. At the same time some Ca is probably being adsorbed on clay minerals. Consequently the Ca-content of the interstitial water drops below the Ca-content of the sea water. c) Already at an early stage the Mg adsorption on the clays is completed. The adsorbed Mg is later available for diagenetic mineral formations and transformations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have reconstructed the surface water environment of the Arctic Ocean over the last ? 50,000 years using measurements of the organic nitrogen and carbon isotope ratios, carbonate and total organic carbon concentrations (TOC), and terrestrial biomarkers (lignin and long-chain n-alkanes) in four multicores. Variations in nitrogen isotope ratios that are concordant with TOC and carbonate concentrations (representing foraminifera and excluding ice-rafted-debris) reflect differences in relative nutrient utilization of phytoplankton in the surface waters. However, d15N variations also appear to be dependent on the stratification of the water column and therefore potentially track the exchange of nutrients between deep and surface waters. Low Last Glacial Maximum (LGM) d15N values and higher Holocene values are opposite to those recorded in the Southern Ocean. The Arctic Ocean with higher nutrient utilization today compared to the LGM therefore acts as a counterpart to the Southern Ocean, although the global impact on carbon dioxide variations compared to the Southern Ocean is probably low.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The depth variations in the major chemical components dissolved in interstitial waters from the Tonga margin (ODP Site 841) are much more pronounced than those usually observed in deep-sea sediments. The extensive alteration of volcanic Miocene sediments to secondary minerals such as analcime, clays, and thaumasite forms a CaCl2-rich brine. The brine results from a high exchange of Ca to Na, K, and Mg and an increase in Cl concentrations due to removal of H2O from the fluid during the authigenesis of hydrous minerals. The formation of thaumasite could have partly controlled the concentration of dissolved SO4, HCO3, and Ca in the Miocene sediments. The strontium isotopic signature of the interstitial water suggests that alteration of the volcanic Miocene sediments occurred a long time after sedimentation. A transient diffusion model indicates that molecular diffusion was not prevented by lithologic barriers and that the formation of secondary minerals in the Miocene sediment occurred over a short period of time (e.g.,of andesite sills and dikes into the Miocene sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The distribution of Li isotopes in pore waters to a depth of 1157 m below seafloor is presented for ODP Sites 918 and 919 in the Irminger Basin, offshore Greenland. Lithium isotope data are accompanied by strontium isotope ratios to decipher diagenetic reactions in the sediments which are characterized by the pervasive presence of volcanic material, as well as by very high accumulation rates in the upper section. The lowering of the 87Sr/86Sr ratio below contemporaneous seawater values indicates several zones of volcanic material alteration. The Li isotope profiles are complex suggesting a variety of exchange reactions with the solid phases. These include cation exchange with NH4+ and mobilization from sediments at depth, in addition to the alteration of volcanic matter. Lithium isotopes are, therefore, a sensitive indicator of sediment-water interaction. d6Li values of pore waters at these two sites vary between -42 and -25?. At shallow depths (<100 mbsf), rapid decreases in the Li concentration, accompanied by a shift to heavier isotopic compositions, indicate uptake of Li into alteration products. A positive anomaly of d6Li observed at both sites is coincident with the NH4+ maximum produced by organic matter decomposition and may be related to ion exchange of Li from the sediments by NH4+. In the lower sediment column at Site 918, dissolved Li increases with depth and is characterized by enrichment of 6Li. The Li isotopic compositions of both the waters and the solid phase suggest that the enrichment of Li in deep interstitial waters is a result of release from pelagic sediments. The significance of sediment diagenesis and adsorption as sinks of oceanic Li is evaluated. The maximum diffusive flux into the sediment due to volcanic matter alteration can be no more than 5% of the combined inputs from rivers and submarine hydrothermal solutions. Adsorption on to sediments can only account for 5-10% of the total inputs from rivers and submarine hot springs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Riverine water and sediment discharge to the Arctic Ocean is among the most important parameters influencing Arctic climate. It is clear that the evaluation of Arctic paleoclimate requires information on the paleodischarge of major rivers entering the sedimentation basin. Presently, the water discharge of the Ob River accounts for about 12% of the total input of river water into the Arctic Ocean. During the investigation of the Kara Sea in the framework of the Russian-German SIRRO Project, the history of Yenisei discharge received much attention in a number of publications. This paper presents the results of lithological and geochemical investigations with application to the Holocene discharge of the Ob River. Qualitative (SiO2, Al2O3, K2O, and some modules) and quantitative (sedimentation rates and absolute masses of sedimentary material) parameters were used to characterize the history of the Ob sediment discharge. It was shown that the investigated paleochannels of the Ob were initiated at the Pleistocene-Holocene boundary, and during the first half of the Holocene, the river discharge decreased irregularly with decreasing age of sediments. The observed maxima are in fairly good agreement with the data for the Yenisei. We proposed a hypothesis on the influence of glacioisostatic movements in the marginal region of the former Kara ice sheet of late Valdai age on the cessation of marine-fluvial glaciation in the paleochannels of Ob and Yenisei in the periphery of the Ob-Yenisei shoal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A unique record of the chemical evolution of seawater during hydrothermal recharge into oceanic crust is preserved by anhydrite from the volcanic sequences and sheeted dike complex in ODP Hole 504B. Chemical and isotopic analyses 87Sr/86Sr, delta18O, delta34S of anhydrite constrain the changing composition of fluids due to reaction with basalt. There is a general trend of decreasing 87Sr/86Sr of anhydrite, corresponding to the minor incorporation of basaltic strontium with depth in the volcanic rocks. 87Sr/86Sr ratios decrease rapidly with depth in the dikes to values identical to host basalt (0.7029). Sr/Ca ratios (<0.1 mmol/mol) suggest that recharge fluids have very low Sr concentrations and fluids evolve by first precipitating Sr-bearing phases before extensive exchange of Sr with the host basalt. There is a background trend of decreasing sulfate delta18O with depth from +12-13? in the lower volcanics to +7? in the lower sheeted dikes recording an increase in recharge fluid temperature from c. 150° to c. 250°C, and confirming the presence of sulfate in hydrothermal fluids at elevated temperatures. From the amount of anhydrite recovered from Hole 504B and the amount of seawater sulfur that has been reduced to sulfide, a minimum seawater recharge flux can be calculated. This value is 4-25 times lower than estimates of high-temperature fluid fluxes based on either thermal constraints or global chemical budgets and suggests that there is significant deficit of seawater-derived sulfur in the oceanic crust. Only a minor proportion of the seawater that percolates into the crust near the axis is heated to high temperatures and exits as black smoker-type fluids. A significant proportion of the axial heat loss must be advected at 200-250°C by sulfate-bearing hydrothermal solutions that egress diffusely from the crust. These fluids penetrate into the dikes and exchange both heat and chemical tracers without the extensive clogging of porosity by anhydrite precipitation, which would halt hydrothermal circulation for any reasonable fluid flux. The heating of the major proportion of hydrothermal fluids to only moderate temperatures (c. 250°C) reconciles estimates of hydrothermal fluxes derived from thermal models and global geochemical budgets. The flux of hydrothermal sulfate would be of a magnitude similar to the riverine input, and oxygen-isotopic exchange at 200-250°C between dissolved sulfate and recharge fluids during hydrothermal circulation provides a mechanism to continuously buffer seawater sulfate oxygen to the light isotopic composition observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ostracodes are less common than might be normally expected at Sites 642, 643, and 644, perhaps pointing to the fact that the marine habitat below the overlying Pleistocene ice covers was a severe environment. This explanation, however, would not apply to the Pliocene and Miocene deposits from which ostracodes are just as poorly represented. In the latter case the Iceland-Faeroe Ridge might still have acted as a submerged barrier that did not allow an open ocean circulation of bottom waters. Thus the barrier presumably prevented an exchange of cold subarctic bottom water with that of the open Atlantic and therefore benthic deep-sea migration from the south was impeded. Some Quaternary species are, for the first time, recorded to extend to the Pliocene and/or Miocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A marine sediment core from the leeward margin of Great Bahama Bank (GBB) was subjected to a multiproxy study. The aragonite dominated core MD992201 comprises the past 7230 years in a decadal time resolution and shows sedimentation rates of up to 13.8 m/kyr. Aragonite mass accumulation rates, age differences between planktonic foraminifera and aragonite sediments, and temperature distribution are used to deduce changes in aragonite production rates and paleocurrent strengths. Aragonite precipitation rates on GBB are controlled by exchange of carbonate ions and CO2 loss due to temperature-salinity conditions and biological activity, and these are dependent on the current strength. Paleocurrent strengths on GBB show high current velocities during the periods 6000-5100 years BP, 3500-2700 years BP, and 1600-700 years BP; lower current speeds existed during the time intervals 5100-3500 years BP, 2700-1600 years BP, and 700-100 years BP. Bahamian surface currents are directly linked to the North Atlantic atmospheric circulation, and thus periods with high (low) current speeds are proposed to be phases of strong (weak) atmospheric circulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Six Deep Sea Drilling Project (DSDP) Sites (252, 285, 315, 317, 336, 386) were examined for the chemical composition of the dissolved salts in interstitial waters, the oxygen isotopic composition of the interstitial waters, and the major ion composition of the bulk solid sediments. An examination of the concentration-depth profiles of dissolved calcium, magnesium, potassium, and H218O in conjunction with oxygen isotope mass balance calculations confirms the hypothesis that in DSDP pelagic drill sites concentration gradients in Ca. Mg. K, and H218O are largely due to alteration reactions occurring in the basalts of Layer 2 and to alteration reactions involving volcanic matter dispersed in the sediment column. Oxygen isotope mass balance calculations require substantial alteration of Layer 2 (up to 25% of the upper 1000 m). but only minor exchange of Ca, Mg, and K occurs with the overlying ocean. This implies that alteration reactions in Layer 2 are almost isochemical.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Along a transatlantic section from 57°N to 60°S that was carried out from November 7 till December 19, 2000 on board R/V Horizont II concentrations of CO2 were measured in the near-water layer of the air and differences between partial pressures in water and air in various climatic zones were calculated. It was shown that variations of CO2 concentrations in the near-water layer of air and those of values of water-air partial pressure difference were from 324x10**-6 to 426x10**-6 and from 150x10**-6 to 100x10**-6 atm, respectively. Maximum value of CO2 partial pressure in air in the near-water layer (426x10**-6 atm) was noted at 45°-47°N; minimum of 324x10**-6 atm was found in Antarctica at 59°S. During measurenents maximum value of CO2 partial pressure difference in water and air (150 x10**-6) was observed at 45°-48°N; maximum flux in this case was directed from the atmosphere to water. Maximum value of CO2 partial pressure difference in water and air for flux directed from the ocean to air (100 x10**-6) was observed at 59°-60°S. Comparison of calculated values of partial pressure difference in water and air with previous data points to more intense exchange of CO2 between the ocean and atmosphere during the survey period was considered. According to values of CO2 partial pressure difference in air and water as compared to 1975, exchange intensity in the Northern Hemisphere (absorption from the atmosphere) increased. A well-pronounced latitudinal effect of distribution of CO2 partial pressure in air was observed. Along the route variations in CO2 concentrations in zones of water divergence and convergence were registered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments. Pelagic clays and slowly deposited (<1 cm/1000 yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters. In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/1000 yr the changes chiefly involve gains of Ca(2+) and Sr(2+) and losses of Mg(2+) which balance the Ca(2+) enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr(2+) may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg(2+) for Ca(2+) during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca(2+) and Sr(2+) enrichment is again characteristic, but Mg(2+) losses exceed Ca(2+) gains with the excess being balanced by SO4(post staggered 2-) losses. The data indicate that the reactions are similar to those noted above, except that the Ca(2+) released is not kept in solution but is precipitated by the HCO3(post staggered -) produced in SO4(post staggered 2-) reduction. In both these types of pore waters Na(+) is usually conservative, but K(+) depletions are frequent. In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na(+), Si and CO2, and slight enhancement in Cl(-). The changes are attributed to exchange of Na(+) for Ca(2+) in silicate minerals forming from submarine weathering of igneous rocks such as basalts. Water is also consumed in these reactions, accounting for minor increases in total interstitial salinity. Terrigenous, organic-rich sediments deposited rapidly along continental margins also exhibit significant evidences of alteration. Microbial reactions involving organic matter lead to complete removal of SO4(post staggered 2-), strong HCO3(post staggered -) enrichment, formation of NH4(post staggered +), and methane synthesis from H2 and CO2 once SO4(post staggered 2-) is eliminated. K+ and often Na+ (slightly) are depleted in the interstitial waters. Ca(2+) depletion may occur owing to precipitation of CaCO3. In most cases interstitial Cl- remains relatively constant, but increases are noted over evaporitic strata, and decreases in interstitial Cl- are observed in some sediments adjacent to continents.