970 resultados para Erosión susceptibility
Resumo:
Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^
Resumo:
Following up genetic linkage studies to identify the underlying susceptibility gene(s) for complex disease traits is an arduous yet biologically and clinically important task. Complex traits, such as hypertension, are considered polygenic with many genes influencing risk, each with small effects. Chromosome 2 has been consistently identified as a genomic region with genetic linkage evidence suggesting that one or more loci contribute to blood pressure levels and hypertension status. Using combined positional candidate gene methods, the Family Blood Pressure Program has concentrated efforts in investigating this region of chromosome 2 in an effort to identify underlying candidate hypertension susceptibility gene(s). Initial informatics efforts identified the boundaries of the region and the known genes within it. A total of 82 polymorphic sites in eight positional candidate genes were genotyped in a large hypothesis-generating sample consisting of 1640 African Americans, 1339 whites, and 1616 Mexican Americans. To adjust for multiple comparisons, resampling-based false discovery adjustment was applied, extending traditional resampling methods to sibship samples. Following this adjustment for multiple comparisons, SLC4A5, a sodium bicarbonate transporter, was identified as a primary candidate gene for hypertension. Polymorphisms in SLC4A5 were subsequently genotyped and analyzed for validation in two populations of African Americans (N = 461; N = 778) and two of whites (N = 550; N = 967). Again, SNPs within SLC4A5 were significantly associated with blood pressure levels and hypertension status. While not identifying a single causal DNA sequence variation that is significantly associated with blood pressure levels and hypertension status across all samples, the results further implicate SLC4A5 as a candidate hypertension susceptibility gene, validating previous evidence for one or more genes on chromosome 2 that influence hypertension related phenotypes in the population-at-large. The methodology and results reported provide a case study of one approach for following up the results of genetic linkage analyses to identify genes influencing complex traits. ^
Resumo:
Lynch syndrome, is caused by inherited germ-line mutations in the DNA mismatch repair genes resulting in cancers at an early age, predominantly colorectal (CRC) and endometrial cancers. Though the median age at onset for CRC is about 45 years, disease penetrance varies suggesting that cancer susceptibility may be modified by environmental or other low-penetrance genes. Genetic variation due to polymorphisms in genes encoding metabolic enzymes can influence carcinogenesis by alterations in the expression and activity level of the enzymes. Variation in MTHFR, an important folate metabolizing enzyme can affect DNA methylation and DNA synthesis and variation in xenobiotic-metabolizing enzymes can affect the metabolism and clearance of carcinogens, thus modifying cancer risk. ^ This study examined a retrospective cohort of 257 individuals with Lynch syndrome, for polymorphisms in genes encoding xenobiotic-metabolizing enzymes-- CYP1A1 (I462V and MspI), EPHX1 (H139R and Y113H), GSTP1 (I105V and A114V), GSTM1 and GSTT1 (deletions) and folate metabolizing enzyme--MTHFR (C677T and A1298C). In addition, a series of 786 cases of sporadic CRC were genotyped for CYP1A1 I462V and EPHX1 Y113H to assess gene-gene interaction and gene-environment interaction with smoking in a case-only analysis. ^ Prominent findings of this study were that the presence of an MTHFR C677T variant allele was associated with a 4 year later age at onset for CRC on average and a reduced age-associated risk for developing CRC (Hazard ratio: 0.55; 95% confidence interval: 0.36–0.85) compared to the absence of any variant allele in individuals with Lynch syndrome. Similarly, Lynch syndrome individuals heterozygous for CYP1A1 I462V A>G polymorphism developed CRC an average of 4 years earlier and were at a 78% increased age-associated risk (Hazard ratio for AG relative to AA: 1.78; 95% confidence interval: 1.16-2.74) than those with the homozygous wild-type genotype. Therefore these two polymorphisms may be additional susceptibility factors for CRC in Lynch syndrome. In the case-only analysis, evidence of gene-gene interaction was seen between CYP1A1 I462V and EPHX1 Y113H and between EPHX1 Y113H and smoking suggesting that genetic and environmental factors may interact to increase sporadic CRC risk. Implications of these findings are the ability to identify subsets of high-risk individuals for targeted prevention and intervention. ^
Resumo:
Histo-blood group antigens (HBGAs) have been associated with susceptibility to enteric pathogens including noroviruses (NoVs), enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni, and Vibrio cholerae. We performed a retrospective cohort study to evaluate the relationship between traveler HBGA phenotypes and susceptibility to travelers' diarrhea (TD) and post-infectious complications. 364 travelers to Guadalajara, Mexico were followed prospectively from June 1 - September 30, 2007 and from June 7–July 28, 2008 for the development of TD and at 6 months for post-infectious irritable bowel syndrome (PIIBS). Noroviruses were detected from illness stool specimens with RT-PCR. Diarrheal stool samples were also assayed for enterotoxigenic and enteroaggregative E. coli, Salmonella species, Shigella species, Vibrio species, Campylobacter jejuni, Yersinia enterocolitica, Aeromonas species, and Plesiomonas species. Diarrheal stools were evaluated for inflammation with fecal leukocytes, mucus, and occult blood. Phenotyping for ABO and Lewis antigens with an ELISA assay and FUT2 gene PCR genotyping for secretor status were performed with saliva. 171 of 364 (47%) subjects developed TD. HBGA typing for the travelers revealed O (62.9%), A (34.6%), B (1.6%), and AB (0.8%) phenotypes. There were 7% nonsecretors and 93% secretors among the travelers. AB phenotypes were more commonly associated with Cryptosporidium species (P=0.04) and ETEC ( P=0.08) as causes of TD. AB and B phenotype individuals were more likely to experience inflammatory diarrhea, particularly mucoid diarrhea ( P=0.02). However, there were relatively few individuals with AB and B phenotypes. GI and GII NoV and Cryptosporidium species infections and PI-IBS were identified only in secretors, but these differences were not statistically significant, (P=1.00), (P=1.00), and (P=0.60), respectively. Additional studies are needed to evaluate whether AB phenotype individuals may be more susceptible to developing TD associated with Cryptosporidium species or ETEC, and whether AB and B phenotype individuals may be more likely to develop inflammatory TD. Further studies are needed to investigate whether nonsecretor travelers may be at less risk for developing infections with NoVs and Cryptosporidium species and PI-IBS.^
Resumo:
Bladder cancer is the fourth most common cancer in men in the United States. There is compelling evidence supporting that genetic variations contribute to the risk and outcomes of bladder cancer. The PI3K-AKT-mTOR pathway is a major cellular pathway involved in proliferation, invasion, inflammation, tumorigenesis, and drug response. Somatic aberrations of PI3K-AKT-mTOR pathway are frequent events in several cancers including bladder cancer; however, no studies have investigated the role of germline genetic variations in this pathway in bladder cancer. In this project, we used a large case control study to evaluate the associations of a comprehensive catalogue of SNPs in this pathway with bladder cancer risk and outcomes. Three SNPs in RAPTOR were significantly associated with susceptibility: rs11653499 (OR: 1.79, 95%CI: 1.24–2.60), rs7211818 (OR: 2.13, 95%CI: 1.35–3.36), and rs7212142 (OR: 1.57, 95%CI: 1.19–2.07). Two haplotypes constructed from these 3 SNPs were also associated with bladder cancer risk. In combined analysis, a significant trend was observed for increased risk with an increase in the number of unfavorable genotypes (P for trend<0.001). Classification and regression tree analysis identified potential gene-environment interactions between RPS6KA5 rs11653499 and smoking. In superficial bladder cancer, we found that PTEN rs1234219 and rs11202600, TSC1 rs7040593, RAPTOR rs901065, and PIK3R1 rs251404 were significantly associated with recurrence in patients receiving BCG. In muscle invasive and metastatic bladder cancer, AKT2 rs3730050, PIK3R1 rs10515074, and RAPTOR rs9906827 were associated with survival. Survival tree analysis revealed potential gene-gene interactions: patients carrying the unfavorable genotypes of PTEN rs1234219 and TSC1 rs704059 exhibited a 5.24-fold (95% CI: 2.44–11.24) increased risk of recurrence. In combined analysis, with the increasing number of unfavorable genotypes, there was a significant trend of higher risk of recurrence and death (P for trend<0.001) in Cox proportional hazard regression analysis, and shorter event (recurrence and death) free survival in Kaplan-Meier estimates (P log rank<0.001). This study strongly suggests that genetic variations in PI3K-AKT-mTOR pathway play an important role in bladder cancer development. The identified SNPs, if validated in further studies, may become valuable biomarkers in assessing an individual's cancer risk, predicting prognosis and treatment response, and facilitating physicians to make individualized treatment decisions. ^
Resumo:
The incidence rates of travelers' diarrhea (TD) have remained unchanged for the last fifty years. More recently, there have been increasing recommendations for self-initiated therapy and even prophylactic therapy for TD. There is no recent data on the in vitro activities of commonly used antibiotics for TD therapy and whether there have been any changes in susceptibilities over the last ten years. 456 enteropathogens were isolated from adult travelers to Mexico, India, and Guatemala between the years 2006 to 2008. MICs were determined for 10 different antimicrobials by the agar dilution method. Traditional antibiotics such as ampicillin, trimethoprim/sulfamethoxazole, and doxycycline continue to show high levels of resistance. Current first line antibiotic agents including fluoroquinolones and azithromycin had significantly higher MICs when compared to 10 years ago and MIC90 levels were beyond the CSLI cutoffs for resistance. There were significant geographical differences in resistance patterns when comparing Central America with India. Entertoxigenic Escherichia coli (ETEC) isolates were more resistant to ciprofloxacin (p=0.023), and levofloxacin (p=0.0078) in India; whereas, enteroaggregative Escherichia coli (EAEC) isolates from Central America showed more resistance. When compared to MICs of isolates 10 years prior, there was a four to ten-fold increase in MIC90s for ceftriaxone, ciprofloxacin, levofloxacin and azithromycin for both ETEC and EAEC. There were no significant changes in rifaximin MICs over the last ten years, which makes it a promising agent for TD. Rising MICs over time implicate the need for continuous surveillance of susceptibility patterns worldwide and for geography specific recommendations in TD therapy.^
Resumo:
Studies have demonstrated a variable response to ozone among individuals and animal species and strains. For instance, C57BL/6J mice have a greater inflammatory response to ozone exposure than C3H/HeJ mice. In these studies, I utilized these strain differences in an effort to derive a mechanistic explanation to the variable strain sensitivity to ozone exposure. Therefore, alveolar macrophages (AM) from C57BL/6J and C3H/HeJ mice were exposed in vitro to hydrogen peroxide ($\rm H\sb2O\sb2$), heat and acetyl ceramide or in vivo to ozone. Necrosis and DNA fragmentation in macrophages from the two murine strains were determined to assess cytotoxicity following these treatments. In addition, synthesis and expression of the stress proteins, stress protein 72 (SP72) and heme oxygenase (HO-1), were examined following treatments. The in vitro experiments were conducted to eliminate the possibility of in vivo confounders (i.e., differences in breathing rates in the two strains) and thus directly implicate some inherent difference between cells from the two murine strains. $\rm H\sb2O\sb2$ and heat caused greater cytotoxicity in AM from C57BL/6J than C3H/HeJ mice and DNA fragmentation was a particularly sensitive indicator of cell injury. Similarly, AM from C57BL/6J mice were more sensitive to ozone exposure than cells from C3H/HeJ mice. Exposure to either 1 or 0.4 ppm ozone caused greater cytotoxicity in macrophages from C57BL/6J mice compared to macrophages from C3H/HeJ mice. The increased sensitivity of AM to injury was associated with decreased synthesis and expression of stress proteins. AM from C57BL/6J mice synthesized and expressed significantly less stress proteins in response to heat and ozone than AM from C3H/HeJ mice. Heat treatment resulted in greater synthesis and expression of SP72. In addition, macrophages from C57BL/6J mice expressed lower amounts of HO-1 than macrophages from C3H/HeJ mice following 0.4 ppm ozone exposure. Therefore, AM from C57BL/6J mice are more susceptible to oxidative injury than AM from C3H/HeJ mice which might be due to differential expression of stress proteins in these cells. ^
Resumo:
This case control study was conducted to assess the association between lung cancer risk, mutagen sensitivity (a marker of cancer susceptibility), and a putative lung carcinogen, wood dust exposure. There were 165 cases (98 African-Americans, 67 Mexican-Americans) with newly diagnosed, previously untreated lung cancer, and 239 controls, frequency-matched on age, sex, and ethnicity.^ Mutagen sensitivity ($\ge$1 break/cell) was associated with a statistically significant elevated risk for lung cancer (odds ratio (OR) = 4.1, 95% confidence limits (CL) = 2.3,7.2). Wood dust exposure was also a significant predictor of risk (OR = 2.8, 95% CL = 1.2,6.6) after controlling for smoking and mutagen sensitivity. When stratified by ethnicity, wood dust exposure was a significant risk factor for African-Americans (OR = 4.0, 95% CL = 1.4,11.5), but not for Mexican-Americans (OR = 1.5, 95% CL = 0.3,7.1). Stratified analysis suggested a greater than multiplicative interaction between wood dust exposure and both mutagen sensitivity and smoking.^ The cases had significantly more breaks on chromosomes 4 and 5 than the controls did with ORs of 4.9 (95% CL = 2.0, 11.7) and 3.9 (95% CL = 1.6, 9.3), respectively. Breaks at 4p14, 4q27, 4q31, 5q21-22, 5q31, and 5q33 were significantly more common in lung cancer patients than in controls. Lung cancer risk had a dose-response relationship with breaks on chromosomes 4 and 5. Cigarette smoking had a strong interaction with breaks on chromosomes 2, 4, and 5.^ In a molecular cytogenetic study, using chromosome painting and G-banding, we showed that: (1) the proportion of chromosome 5 abnormalities surviving as chromosome-type aberrations remained significantly higher in cells of lung cancer cases (14%) than in controls (5%) (P $<$ 0.001). However, no significant differences were detected in chromosome 4 abnormalities between cases and controls; (2) the proportion of chromosome 5q13-22 abnormalities was 5.3% in the cases and 0.7% in the controls (P $<$ 0.001). 5q13-22 regions represented 40% of all abnormalities on chromosome 5 in the cases and only 14% in the controls.^ This study suggests that mutagen sensitivity, wood dust exposure, and cigarette smoking were independent risk factors for lung cancer, and the susceptibility of particular chromosome loci to mutagenic damage may be a genetic marker for specific types of lung cancer. ^
Resumo:
Pancreatic cancer is the 4th most common cause for cancer death in the United States, accompanied by less than 5% five-year survival rate based on current treatments, particularly because it is usually detected at a late stage. Identifying a high-risk population to launch an effective preventive strategy and intervention to control this highly lethal disease is desperately needed. The genetic etiology of pancreatic cancer has not been well profiled. We hypothesized that unidentified genetic variants by previous genome-wide association study (GWAS) for pancreatic cancer, due to stringent statistical threshold or missing interaction analysis, may be unveiled using alternative approaches. To achieve this aim, we explored genetic susceptibility to pancreatic cancer in terms of marginal associations of pathway and genes, as well as their interactions with risk factors. We conducted pathway- and gene-based analysis using GWAS data from 3141 pancreatic cancer patients and 3367 controls with European ancestry. Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Using the logistic kernel machine (LKM) test, we analyzed 17906 genes defined by University of California Santa Cruz (UCSC) database. Using the likelihood ratio test (LRT) in a logistic regression model, we analyzed 177 pathways and 17906 genes for interactions with risk factors in 2028 pancreatic cancer patients and 2109 controls with European ancestry. After adjusting for multiple comparisons, six pathways were marginally associated with risk of pancreatic cancer ( P < 0.00025): Fc epsilon RI signaling, maturity onset diabetes of the young, neuroactive ligand-receptor interaction, long-term depression (Ps < 0.0002), and the olfactory transduction and vascular smooth muscle contraction pathways (P = 0.0002; Nine genes were marginally associated with pancreatic cancer risk (P < 2.62 × 10−5), including five reported genes (ABO, HNF1A, CLPTM1L, SHH and MYC), as well as four novel genes (OR13C4, OR 13C3, KCNA6 and HNF4 G); three pathways significantly interacted with risk factors on modifying the risk of pancreatic cancer (P < 2.82 × 10−4): chemokine signaling pathway with obesity ( P < 1.43 × 10−4), calcium signaling pathway (P < 2.27 × 10−4) and MAPK signaling pathway with diabetes (P < 2.77 × 10−4). However, none of the 17906 genes tested for interactions survived the multiple comparisons corrections. In summary, our current GWAS study unveiled unidentified genetic susceptibility to pancreatic cancer using alternative methods. These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of pancreatic cancer, once confirmed, will shed promising light on the prevention and treatment of this disease. ^
Resumo:
This prospective cohort study estimated how antibacterial resistance affected the time until clinical response. Relative rates of improvement and cure were estimated by proportional-hazards regression for 391 patients with culture-confirmed bacterial keratitis who had the ciprofloxacin minimal inhibitory concentration (MIC) measured of the principal corneal isolate and who were treated with ciprofloxacin 0.3% solution or ointment. After adjusting for age and hypopyon status and stratifying by ulcer size, clinic, and ciprofloxacin formulation, the summary rate of clinical improvement with ciprofloxacin therapy was reduced by 42% (95% confidence limits [CL], 3%, 65%) among patients whose corneal isolate's ciprofloxacin MIC exceeded 1.0 μg/mL compared to those with more sensitive isolates. The summary rate of resolution to improvement and cure was reduced by 36% (95% CL, 11%, 53%) among corneal infections having a higher ciprofloxacin MIC. Rate ratios were modified by the size of the presenting corneal ulceration; for ulcer diameters of 4 mm or less and of more than 4 mm, improvement rate ratios were 0.56 (95% CL, 0.31, 1.02) and 0.65 (95% CL, 0.23, 1.80), respectively; resolution rate ratios were 0.63 (95% CL, 0.44, 0.91) and 0.67 (95% CL, 0.32, 1.39), respectively. Sensitivity analysis showed that the summary improvement rate ratio could be maximally overestimated by 24% (95% CL, −29%, 114%) because of informative censoring or by 33% (95% CL, −21%, 126%) from loss to follow up. Based on reported corneal pharmacokinetics of topical ciprofloxacin, the probability of clinical improvement was 90% or more if the ratio of the achievable corneal ciprofloxacin concentration to the corneal isolate's ciprofloxacin MIC was above 8 or the ratio of the area under the 24-hour corneal concentration curve to the ciprofloxacin MIC was greater than 151. This study suggests that corneal infections by bacteria having a higher ciprofloxacin MIC respond more slowly to ciprofloxacin treatment than those with a lower MIC. While the rate of clinical resolution is affected by patient age and clinical severity, antimicrobial susceptibility testing of corneal cultures can indicate the relative effectiveness of antibacterial therapy. A pharmacodynamic approach to treating bacterial keratitis offers the prospect of optimal antimicrobial selection and modification. ^
Anisotropy-magnetic susceptibility from the Krems Wachtberg archaeological Site (Austria), section 1
Resumo:
Recent advances in radiometric dating result in significant improvements in the geological timescale and provide better insight into the timing of various processes and evolutions within the Earth's system. However, no radiometric ages are contained within the Givetian. Consequently, the absolute ages of the Givetian Stage boundaries, as well as the stage's duration, remain poorly constrained. As an alternative, the analysis of sedimentary cycles allows for the estimation of the duration of this stage. We examined the high-resolution magnetic susceptibility signals of four Givetian outcrops in the Givet area for a possible astronomical imprint, to fully understand the rates of evolutionary and environmental change. All four sections are firmly correlated and wavelet analyses of the magnetic susceptibility signals reveal the imprint of astronomical eccentricity forcing. The highly stable 405 kyr cycles constrain the duration of the Givetian Stage at 4.35±0.45 Myr, which is in good agreement with the International Chronostratigraphic Chart (5.0 Myr). The studied sections also exhibit an imprint of obliquity, suggesting a climatic teleconnection between low and high latitudes. The corresponding microfacies curves demonstrate similar astronomical imprint, and thereby indicate that the observed 10**5 year-scale cyclicity is the result of climatic and environmental change.