737 resultados para Entrepreneurial Orientation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Format: 5 minute introduction, 15 min per speaker, 70 minute discussion Moderator: Eric DeMeulenaere, Clark University

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Calcaneonavicular coalitions (CNC) have been reported to be associated with anatomical aberrations of either the calcaneus and/or navicular bones. These morphological abnormalities may complicate accurate surgical resection. Three-dimensional analysis of spatial orientation and morphological characteristics may help in preoperative planning of resection. MATERIALS AND METHODS: Sixteen feet with a diagnosis of CNC were evaluated by means of 3-D CT modeling. Three angles were defined that were expressed in relation to one reproducible landmark (lateral border of the calcaneus): the dorsoplantar inclination, anteroposterior inclination, and socket angle. The depth and width of the coalitions were measured and calculated to obtain the estimated contact surface. Three-dimensional reconstructions of the calcanei served to evaluate the presence, distortion or absence of the anterior calcaneal facet and presence of a navicular beak. The interrater correlations were assessed in order to obtain values for the accuracy of the measurement methods. Sixteen normal feet were used as controls for comparison of the socket angle; anatomy of the anterior calcaneal facet and navicular beak as well. RESULTS: The dorsoplantar inclination angle averaged 50 degrees (+/-17), the anteroposterior inclination angle 64 degrees (+/-15), and the pathologic socket angle 98 degrees (+/-11). The average contact area was 156 mm(2). Ninety-four percent of all patients in the CNC group revealed a plantar navicular beak. In 50% of those patients the anterior calcaneal facet was replaced by the navicular portion and in 44% the facet was totally missing. In contrast, the socket angle in the control group averaged 77 degrees (+/-18), which was found to be statistically different than the CNC group (p = 0.0004). Only 25% of the patients in the control group had a plantar navicular beak. High, statistically significant interrater correlations were found for all measured angles. CONCLUSION: Computer-aided CT analysis and reconstructions help to determine the spatial orientations of CNC in space and provide useful information in order to anticipate morphological abnormalities of the calcaneus and navicular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High horizontal stresses can cause numerous ground control problems in mines and other underground structures ultimately impacting worker safety, productivity and the economics of an underground operation. Mine layout and design can be optimized when the presence and orientation of these stresses are recognized and their impact minimized. A simple technique for correlating the principal horizontal stress direction in a sedimentary rock mass with the preferential orientation of moisture induced expansion in a sample of the same rock was introduced in the 1970s and has since gone un-reported and unused. This procedure was reexamined at a locality near the original test site at White Pine, Michigan in order to validate the original research and to consider its usefulness in mining and civil engineering applications in high horizontal stress conditions. This procedure may also be useful as an economical means for characterizing regional stress fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: In transcranial magnetic stimulation (TMS) of the motor cortex, the optimal orientation of the coil on the scalp is dependent on the muscle under investigation, but not yet known for facial muscles. METHODS: Using a figure-of-eight coil, we compared TMS induced motor evoked potentials (MEPs) from eight different coil orientations when recording from ipsi- and contralateral nasalis muscle. RESULTS: The MEPs from nasalis muscle revealed three components: The major ipsi- and contra-lateral middle latency responses of approximately 10 ms onset latency proved entirely dependent on voluntary pre-innervation. They were most easily obtained from a coil orientation with posterior inducing current direction, and in this respect resembled the intrinsic hand rather than the masseter muscles. Early short duration responses of around 6 ms onset latency were best elicited with an antero-lateral current direction and not pre-innervation dependent, and therefore most probably due to stimulation of the nerve roots. Late responses (>18 ms) could inconsistently be elicited with posterior coil orientations in pre-innervated condition. CONCLUSIONS: By using the appropriate coil orientation and both conditions relaxed and pre-innervated, cortically evoked MEP responses from nasalis muscle can reliably be separated from peripheral and reflex components and also from cross talk of masseter muscle activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our goal was to validate accuracy, consistency, and reproducibility/reliability of a new method for determining cup orientation in total hip arthroplasty (THA). This method allows matching the 3D-model from CT images or slices with the projected pelvis on an anteroposterior pelvic radiograph using a fully automated registration procedure. Cup orientation (inclination and anteversion) is calculated relative to the anterior pelvic plane, corrected for individual malposition of the pelvis during radiograph acquisition. Measurements on blinded and randomized radiographs of 80 cadaver and 327 patient hips were investigated. The method showed a mean accuracy of 0.7 +/- 1.7 degrees (-3.7 degrees to 4.0 degrees) for inclination and 1.2 +/- 2.4 degrees (-5.3 degrees to 5.6 degrees) for anteversion in the cadaver trials and 1.7 +/- 1.7 degrees (-4.6 degrees to 5.5 degrees) for inclination and 0.9 +/- 2.8 degrees (-5.2 degrees to 5.7 degrees) for anteversion in the clinical data when compared to CT-based measurements. No systematic errors in accuracy were detected with the Bland-Altman analysis. The software consistency and the reproducibility/reliability were very good. This software is an accurate, consistent, reliable, and reproducible method to measure cup orientation in THA using a sophisticated 2D/3D-matching technique. Its robust and accurate matching algorithm can be expanded to statistical models.