982 resultados para Endocrine Glands
Resumo:
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)
Resumo:
Obesity is considered a worldwide public health problem showing an increased prevalence in developing countries, with urgent need for new and more efficient drugs and therapies. Enalapril, an angiotensin-I converting enzyme inhibitor (ACEi), is classically used in antihypertensive therapies, however, earlier publications have shown that this drug could also have significant impact on body weight in rats as well as in humans, besides reducing blood pressure. The effect of this drug in the white adipose tissue has been neglected for long time, even considering that most components of the renin-angiotensin and kallikrein-kinin system are expressed in this tissue. Furthermore, the adipose tissue is considered today as one of the most important sites for endocrine/inflammatory regulation of appetite and energy output and AngII has been linked to the metabolism in this tissue. Therefore, we analyzed the influence of chronic enalapril treatment in normotensive rats at earlier ages, evaluating body weight, energy homeostasis, lipid profile and serum levels of the hormones leptin and insulin, in the presence of a standard or a palatable hyperlipidic diet regimen for one month. Our results show that enalapril treatment is able to reduce body fat on both diets, without alteration in serum lipid profile. Furthermore, animals receiving enalapril showed reduction in food intake, leptin level and energy intake. In summary, these findings show for the first time that the ACEi enalapril reduces body fat in young normotensive rats and highlights a novel target to treat obesity and associated diseases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Recently we have shown that BhSGAMP-1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20-OH ecdysone. This control probably involves the participation of short-lived repressor(s). We also found that the promoter of BhSGAMP-1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP-1 peptide is secreted in the saliva. The BhSGAMP-1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect`s immediate vicinity, during molts. genesis 47:847-857, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.
Resumo:
Gene amplification occurs in Bradysia hygida salivary glands, at the end of the fourth larval instar. The hormone 20-hydroxyecdysone (20E) triggers this process, which results in DNA puff formation. Amplified genes are activated in two distinct groups. The activity of the first group is dependent on high levels of 20E, while the second group needs low hormone levels. Consequently, the salivary glands of B. hygida constitute an interesting biological model to study how 20E, and its receptors, affect gene amplification and activity. We produced polyclonal antibodies against B. hygida EcR (BhEcR). In western blots a polypeptide of about 66 kDa was detected in salivary gland extracts. The antibodies were also used for indirect immune-localization of BhEcR in polytene chromosomes. RNA-polymerase II was also immune-detected. We did not detect the receptor in chromosome C where the first and second groups of DNA puffs form during DNA puff anlage formation, but it was present during puff expansion. During the active phase of both groups of DNA puffs, RNA polymerase II co-localized with BhEcR. After puff regression, these antigens were not detected. Apparently, EcR plays a direct role in the transcription of amplified genes, but its role in gene amplification remains enigmatic.
Resumo:
Vitellogenin (Vg) and lipophorin (Lp) are lipoproteins which play important roles in female reproductive physiology of insects. Both are actively taken up by growing oocytes and especially Vg and its receptor are considered as female-specifically expressed. The finding that the fat body of in honey bee (Apis mellifera) drones synthesizes Vg and is present in hemolymph has long been viewed as a curiosity. The recent paradigm change concerning the role played by Vg in honey bee life history, especially social division of labor, has now led us to investigate whether a physiological constellation similar to that seen in female reproduction may also be represented in the male sex. By means of Western blot analysis we could show that both Vg and Lp are present in the reproductive tract of adult drones, including the accessory (mucus) glands, but apparently are not secreted. Furthermore, we analyzed the transcript levels of the genes encoding these proteins (vg and lp), as well as their putative receptors (Amvgr and Amlpr) in fat body and accessory glands. Whereas lp, vg and Amlpr transcript levels decreased with age in both tissues. Amvgr mRNA levels increased with age in fat body. To our knowledge this is the first report that vitellogenin and its receptor are co-expressed in the reproductive system of a male insect. We interpret these findings as a cross-sexual transfer of a social physiological trait, associated with the rewiring of the juvenile hormone/vitellogenin circuitry that occurred in the female sex of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. Objective: The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Design: The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. Results: We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g. 2791G>A transition in the last position of exon 4. This nucleotide is also part of 5` intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g. 2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. Conclusions: We describe two novel mutations, g. 4671_4672insC and g. 2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. (J Clin Endocrinol Metab 94: 3481-3485, 2009)
Resumo:
The pathophysiology of hepatic osteodystrophy (HO) remains poorly understood. Our aim was to evaluate bone histomorphometry, biomechanical properties, and the role of the growth hormone (GH)/insulin-like growth factor-I (IGF-I) system in the onset of this disorder. Forty-six male Wistar rats were divided into two groups: sham-operated (SO, n = 23) and bile duct-ligated (BDL, n = 23). Rats were killed on day 30 postoperatively. Immunohistochemical expression of IGF-I and GH receptor was determined in liver tissue and in the proximal growth plate cartilage of the left tibia. Histomorphometric analysis was performed in the right tibia, and the right femur was used for biomechanical analysis. The maximal force at fracture and the stiffness of the mid-shaft femur were, respectively, 53% and 24% lower in BDL compared to SO. Histomorphometric measurements showed low cancellous bone volume and decreased cancellous bone connectivity in BDL, compatible with osteoporosis. This group also showed increased mineralization lag time, indicating disturbance in bone mineralization. Serum levels of IGF-I were lower in BDL (basal 1,816 +/- A 336 vs. 30 days 1,062 +/- A 191 ng/ml, P < 0.0001). BDL also showed higher IGF-I expression in the liver tissue but lower IGF-I and GH receptor expression in growth plate cartilage than SO. Osteoporosis is the most important feature of HO; BDL rats show striking signs of reduced bone volume and decreased bone strength, as early as after 1 month of cholestasis. The endocrine and autocrine-paracrine IGF-I systems are deeply affected by cholestasis. Further studies will be necessary to establish their role in the pathogenesis of HO.
Resumo:
Context: MicroRNAs (miRNAs) are small noncoding RNAs, functioning as antisense regulators of gene expression by targeting mRNA and contributing to cancer development and progression. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites of the genome. Objective: The aim of the study was to analyze the differential expression of let-7a, miR-15a, miR-16, miR-21, miR-141, miR-143, miR-145, and miR-150 in corticotropinomas and normal pituitary tissue and verify whether their profile of expression correlates with tumor size or remission after treatment. Material and Methods: ACTH-secreting pituitary tumor samples were obtained during transphenoidal surgery from patients with Cushing disease and normal pituitary tissues from autopsies. The relative expression of miRNAs was measured by real-time PCR using RNU44 and RNU49 as endogenous controls. Relative quantification of miRNA expression was calculated using the 2(-Delta Delta Ct) method. Results: We found underexpression of miR-145 (2.0-fold; P = 0.04), miR-21 (2.4-fold; P = 0.004), miR-141 (2.6-fold; P = 0.02), let-7a (3.3-fold; P = 0.003), miR-150 (3.8-fold; P = 0.04), miR-15a (4.5-fold; P = 0.03), miR-16 (5.0-fold; P = 0.004), and miR-143 (6.4-fold; P = 0.004) in ACTH-secreting pituitary tumors when compared to normal pituitary tissues. There were no differences between miRNA expression and tumor size as well as miRNA expression and ratio of remission after surgery, except in patients presenting lower miR-141 expression who showed a better chance of remission. Conclusion: Our results support the possibility that altered miRNA expression profile might be involved in corticotrophic tumorigenesis. However, the lack of knowledge about miRNA target genes postpones full understanding of the biological functions of down-regulated or up-regulated miRNAs in corticotropinomas. (J Clin Endocrinol Metab 94: 320-323, 2009)
Resumo:
Context: Physiological activation of the prokineticin pathway has a critical role in olfactory bulb morphogenesis and GnRH secretion in mice. Objective: To investigate PROK2 and PROKR2 mutations in patients with hypogonadotropic hypogonadism (HH) associated or not with olfactory abnormalities. Design: We studied 107 Brazilian patients with HH (63 with Kallmann syndrome and 44 with normosmic HH) and 100 control individuals. The coding regions of PROK2 and PROKR2 were amplified by PCR followed by direct automatic sequencing. Results: In PROK2, two known frameshift mutations were identified. Two brothers with Kallmann syndrome harbored the homozygous p. G100fsX121 mutation, whereas one male with normosmic HH harbored the heterozygous p. I55fsX56 mutation. In PROKR2, four distinct mutations (p. R80C, p. Y140X, p. L173R, and p. R268C) were identified in five patients with Kallmann syndrome and in one patient with normosmic HH. These mutations were not found in the control group. The p. R80C, p. L173R, and p. R268C missense mutations were identified in the heterozygous state in the HH patients and in their asymptomatic first-degree relatives. In addition, nomutations of FGFR1, KAL1, GnRHR, KiSS-1, or GPR54 were identified in these patients. Notably, the new nonsense mutation (p. Y140X) was identified in the homozygous state in an anosmic boy with micropenis, bilateral cryptorchidism, and high-arched palate. His asymptomatic parents were heterozygous for this severe defect. Conclusion: We expanded the repertoire of PROK2 and PROKR2 mutations in patients with HH. In addition, we show that PROKR2 haploinsufficiency is not sufficient to cause Kallmann syndrome or normosmic HH, whereas homozygous loss-of-function mutations either in PROKR2 or PROK2 are sufficient to cause disease phenotype, in accordance with the Prokr2 and Prok2 knockout mouse models.
Resumo:
Autologous or allogeneic SCT with conventional conditioning (chemotherapy with or without irradiation) has emergedas an effective and potentially curative therapy in patients with hematologic malignancies and in other selected solid tumors; however, several patients experience significant early and delayed side effects, including long-term endocrine imbalance and infertility. In spite of several reproductive recovery and pregnancy reports published in the oncology literature, review of medical literature reveals a paucity of comparable information in the SCT field. We report here four cases of ovarian recovery in patients who received hormonal replacement therapy after diagnosis of primary ovarian failure due to high-dose chemotherapy and SCT.
Resumo:
Context: Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. Objective: A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. Design and Setting: The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. Patients or Other Participants: 345 probands, 18 family members, and 292 controls were studied. Intervention: Reproductive phenotypes throughout reproductive life and before and after therapy were examined. Main Outcome Measure: Rare sequence variants in TAC3/TACR3 were detected. Results: In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. Conclusions: Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time. (J Clin Endocrinol Metab 95: 2857-2867, 2010)
Resumo:
The medial amygdaloid nucleus (MeA) modulates several physiological and behavioral processes and among them, the cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint evokes cardiovascular responses, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. We presently report effects of MeA pharmacological manipulations on BP and HR responses evoked by acute restraint in rats. Bilateral microinjection of 100 nL of the unspecific synaptic blocker COCl(2) (1 mM) into the MeA increased HR response to acute restraint, without significant effect on the BP response. This result indicates an inhibitory influence of MeA on restraint-evoked HR changes. Injections of the non-selective muscarinic receptor antagonist atropine (3 nmol); the inhibitor of choline uptake hemicholinium (2 nmol) or the selective M(1)-receptor antagonist pirenzepine (6 nmol) caused effects that were similar to those caused by cobalt. These results suggest that local cholinergic neurotransmission and M(1)-receptors mediate the MeA inhibitory influence on restraint-related HR responses. Pretreatment with the M3 receptor antagonist 4-DAMP (4-Diphenylacetoxy-N-methylpiperidine methiodide-2 nmol) did not affect restraint-related cardiovascular responses, reinforcing the idea that M(1)-receptors mediate MeA-related inhibitory influence on restraint-evoked HR increase. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of cardiovascular control. Stimulation of the PVN evokes changes in blood pressure and heart rate. Additionally, this brain area is connected to several limbic structures implicated in behavioral control, as well as to forebrain and brainstem structures involved in cardiovascular control. This evidence indicates that the PVN may modulate cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint is an unavoidable stressor that evokes marked and sustained cardiovascular changes, which are characterized by elevated mean arterial pressure (MAP) and an intense heart rate (HR) increase. We report on the effect of inhibition of PVN synapses on MAP and HR responses evoked by acute restraint in rats. Bilateral microinjection of the nonspecific synaptic blocker cobalt (CoCl2, 1mM/100nl) into the PVN did not change the HR response or the initial peak of the MAP response to restraint stress, but reduced the area under the curve of the MAP response. Moreover, bilateral microinjection of cobalt in areas surrounding the PVN did not change the cardiovascular response to restraint. These results indicate that synapses in the PVN are involved in the neural pathway that controls blood pressure changes evoked by restraint.