964 resultados para Electrowetting-On-Dielectric


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is very important for the building of the SAW devices to study dielectric and ferroelectrics properties because every SAW device is based in piezoelectric effect that it is made up to transform an electric sign in the mechanical or acoustic sign and a mechanical or acoustic sign in an electric sign. Thus, the purpose of the present work is to prepare PbZr 0,53Ti0.47O3 (PZT) and PbTiO3 (PT) thin films on the Si (100) substrates across spin-coating using a chemical method based in polymeric precursors. After conventional treatment in the furnace, the films were characterized by impedance spectroscopy and hysteresis loops to know its dielectric and ferroelectric properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure and dielectric properties of Nb-Mn or Sb-Mn codoped BaTiO3 compositions were investigated. Starting ceramics powders were prepared by Pechini method. The composites were sintered at 1310°C and 1330°C in an air atmosphere for two hours. The microstructure and compositional investigations were done with SEM equipped with EDS. Two distinguish microstructure regions are observed in Nb/0.05Mn doped BaTiO 3 ceramics sintered at low temperature. The first, large one, with grain sizes from 5-40 μm and the second region with small grain sizes from 1 to 5 μm. Sintering at higher temperature, independent of Mn content, enables to achieve a uniform microstructure with grains less than 6 μm. In Sb/Mn doped ceramics, for both sintering temperatures, bimodal microstructures with fine grained matrix and grains up to 10 μm is formed. The highest value of permittivity at room temperature and the greatest change of permittivity in function of temperature are observed in Nb/0.01Mn doped ceramics compared to the same ones in Sb/Mn doped ceramics. The greatest shift of Curie temperature towards lower temperature has been noticed in Sb/Mn BaTiO3 ceramics compared to others samples. In all investigated samples the dielectric loss after initially large values at low frequency maintains a constant value for f>3 kHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ferroelectric and the dielectric behaviors of binary blends formed by an equi-molar Poly(vinylidene fluoride trifluoroethylene) copolymer [P(VDF-TrFE)] and Poly(methyl methacrylate) [PMMA] were investigated, for several PMMA compositions. For 40 wt.% or more PMMA contents, the blends are completely amorphous. Below this value, they crystallize in the usual Cm2m polar structure of P(VDF-TrFE). The ferroelectric switching characteristics and the dielectric response of the blends demonstrate the formation of dynamically stable ferroelectric domains. Moreover, the blended films are highly transparent in the optical region. Therefore, thin films of these binary blends are good candidates as host materials for nonlinear optical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work fresh cables were laboratory aged under multi-stressing conditions at room temperature. Foils were peeled from cables, with approximately 150 ?m thickness, from the outer, middle and inner positions of the XLPE cable insulating layer. For samples obtained from the outer cable layer position, an increasing near-permanent electrical conduction process with aging time was observed. At the middle and inner cable layer positions a flat-loss relaxation process was observed becoming a dominating process on the ageing. In addition, PEA results confirmed that degradation in the outer region of the XLPE cables arises from the simultaneous presence of dipoles and injected space charge that distorts the internal electric field on the ageing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes observation of piezoelectric response of Ba(Zr 0.10Ti 0.90.O3 ceramics modified with tungsten (BZT:2W) by the mixed oxide method. According to X ray diffraction analysis, the ceramics are free of secondary phases. Transmission electron microscopy (TEM) analyses reveals the absence of segregates in the grain boundaries indicates the high solubility of WO3 in the BZT matrix. The dielectric permittivity measured at a frequency of 10 KHz was equal to 6500 with dieletric loss of 0.15. A typical hysteresis loop was observed at room temperature. Electron Paramagnetic Resonance (EPR) analyses reveals that substitution of W6+ by Ti4+ causes distortion in the crystal structure changing lattice parameter. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does. Copyright © 2010 American Scientific Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dielectric properties of the 0.65[Pb(Mg 1/3Nb 2/3)O 3]-0.35PbTiO 3 ferroelectric ceramic composition were investigated viewing the capability to be used for tunable microwave applications. The dielectric response has been studied for three selected temperatures (300 K, 370 K and 400 K), below the paraelectric- ferroelectric phase transition temperature, as a function of the applied 'bias' electric field. The obtained dielectric tunability was found to be around 60 %, under an electric field of 19 kV/cm, which makes the studied ceramic composition an excellent candidate for application in the electro-electronic industry, as tunable devices. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bismuth titanate ceramics (Bi 4Ti 3O 12) with 10 wt% in excess of bismuth (BIT10) were prepared by the polymeric precursor method and sinterized in microwave (MW) and conventional furnaces (CF). The effect of microwave energy on structural and electrical behavior of BIT10 ceramics was investigated by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrical measurements. The results of the BIT10 ceramics processed in the microwave furnace (MW) showed a high structural organization compared to conventional treatment (CF). Size of grains and dieletrical properties are influenced by annealing conditions while coercitive field is not dependent on it. The maximum dielectric permittivity (12000) was obtained for the sample sintered in the microwave furnace. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does with the influence of microwave energy. Copyright © 2010 American Scientific Publishers All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, air dielectric barrier discharge (DBD) operating at the line frequency (60 Hz) or at frequency of 17 kHz was used to improve the wetting properties of polypropylene (PP). The changes in the surface hydrophilicity were investigated by contact angle measurements. The plasma-induced chemical modifications of PP surface were studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared spectroscopy (FTIR). The polymer surface morphology and roughness before and after the DBD treatment were analyzed by atomic force microscopy (AFM). To compare the plasma treatment effect at different frequencies the variation of the contact angle is presented as a function of the deposited energy density. The results show that both DBD treatments leaded to formation of water-soluble low molecular weight oxidized material (LMWOM), which agglomerated into small mounts on the surface producing a complex globular structure. However, the 60 Hz DBD process produced higher amount of LMWOM on the PP surface comparing to the 17 kHz plasma treatment with the same energy dose. The hydrophilic LMWOM is weakly bounded to the surface and can be easily removed by polar solvents. After washing the DBD-treated samples in de-ionized water their surface roughness and oxygen content were reduced and the PP partially recovered its original wetting characteristics. This suggested that oxidation also occurred at deeper and more permanent levels of the PP samples. Comparing both DBD processes the 17 kHz treatment was found to be more efficient in introducing oxygen moieties on the surface and also in improving the PP wetting properties. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite films made of lead zirconate titanate ceramic particles coated with polyaniline and poly(vinylidene fluoride) - PZT-PAni/PVDF were produced by hot pressing the powder mixtures in the desired ceramic volume fraction. The ceramic particles were coated during the polyaniline synthesis and the conductivity of the conductor polymer was controlled by different degrees of protonation. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ac and dc electrical measurements, the longitudinal d33 piezo coefficient and the photopyroelectric response. Results showed that the presence of PAni increased the dielectric permittivity of the composite and allowed better efficiency in the poling process, which increased the piezo- and pyroelectric activities of the composite film and reduced both the poling time and the poling electric field. The thermal sensing of the material was also analyzed, showing that this composite can be used as pyroelectric sensor. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the electrochemical behavior of Cu-16(wt.%)Zn-6.5(wt.%)Al alloy containing the β'-phase (martensite) was studied in borate buffer solution (pH 8.4) by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The alloy EOC was -0.29 V vs. Hg/HgO/OH-, similar to that of pure copper in this medium, indicating that the processes which occur on the alloy surface are mainly governed by copper. EIS response was related to the dielectric and transmission properties of the complex oxide layer. The CVs showed peaks concerning the redox reactions for copper and zinc. These peaks were assigned to the formation and reduction of copper and zinc species. Furthermore, they showed that the copper oxidation was suppressed by the presence of zinc and aluminum in the alloy composition. The copper and zinc oxidation to form complex oxide layers and the reduction of the different metallic oxides generated in the anodic potential scan suggest that a solid state reaction could determine the metallic oxide formation. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the influence of Sr- and Ca-substitution on the structural and ferroelectric properties of Pb1-xSrxZr0.40Ti0.60O3 (PSZT) and Pb1-xCaxZr0.40Ti0.60O3 (PCZT) ceramic systems. The dielectric measurements show that these substitutions cause a diffuse behavior in the dielectric permittivity curves for all samples. According to the X-ray absorption near-edge structure (XANES) spectra collected at Ti K- and LIII-edge, when Pb was replaced by Sr or Ca, a decrease in the local distortion around Ti atoms in the TiO6 octahedron could be observed. The O K-edge XANES spectra also revealed that the hybridization between O 2p and Pb 6sp states decreased as the amount of Sr or Ca atoms increased. Based on these results, it was possible to ascertain that the ferroelectric behavior in PSZT and PCZT samples bears a close correlation to the hybridization weakening between O 2p and Pb 6 sp states. © 2013 by American Scientific Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)