984 resultados para Electronic portal imaging device


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how a quantum property, a geometric phase, associated with scattering states can be exhibited in nanoscale electronic devices. We propose an experiment to use interference to directly measure the effect of this geometric phase. The setup involves a double-path interferometer, adapted from that used to measure the phase evolution of electrons as they traverse a quantum dot (QD). Gate voltages on the QD could be varied cyclically and adiabatically, in a manner similar to that used to observe quantum adiabatic charge pumping. The interference due to the geometric phase results in oscillations in the current collected in the drain when a small bias across the device is applied. We illustrate the effect with examples of geometric phases resulting from both Abelian and non-Abelian gauge potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This communication reports a laboratory and plant comparison between the University of Cape Town (UCT) device (capillary) and the McGill University bubble sizing method (imaging). The laboratory work was conducted on single bubbles to establish the accuracy of the techniques by comparing with a reference method (capture in a burette). Single bubble measurements with the McGill University technique showed a tendency to slightly underestimate (4% for a 1.3 mm bubble) and the UCT technique to slightly overestimate (1% for the 1.3 man bubble). Both trends are anticipated from fundamental considerations. In the UCT technique bubble breakup was observed when measuring a 2.7 mm bubble using a 0.5 mm ID capillary tube. A discrepancy of 11% was determined when comparing the techniques in an industrial-scale mechanical flotation cell. The possible sources of bias are discussed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study thermal transport in an electronic interferometer comprising a parallel circuit of two quantum dots, each of which has a tunable single electronic state which are connected to two leads at different temperature. As a result of quantum interference, the heat current through one of the dots is in the opposite direction to the temperature gradient. An excess heat current flows through the other dot. Although locally, heat flows from cold to hot, globally the second law of thermodynamics is not violated because the entropy current associated with heat transfer through the whole device is still positive. The temperature gradient also induces a circulating electrical current, which makes the interferometer magnetically polarized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron-multiplying charge coupled devices promise to revolutionize ultrasensitive optical imaging. The authors present a simple methodology allowing reliable measurement of camera characteristics and statistics of single-electron events, compare the measurements to a simple theoretical model, and report camera performance in a truly photon-counting regime that eliminates the excess noise related to fluctuations of the multiplication gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study of a planar microwave imaging system with step-frequency synthesized pulse for possible use in medical applications is described. Simple phantoms, consisting of a cylindrical plastic container with air or oil imitating fatty tissues and small highly reflective objects emulating tumors, are scanned with a probe antenna over a planar surface in the X-band. Different calibration schemes are considered for successful detection of these objects. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of an ultra-wideband planar tapered slot antenna for use in a circular cylindrical microwave imaging system is pre-sented. The antenna was designed assuming high dielectric substrate material Rogers RT6010LM to achieve its compact size. The developed antenna element (50 X 50 mm(2)) features a 10-dB return loss bandwidth from 2.75 GHz to more than 11 GHz. The gain of the antenna is between 3.5 and 9.4 dBi over the 3-10 GHz band. The experimental tests showed that the manufactured antenna element supports transmission of narrow pulses with negligible distortions, as required in the microwave imaging system. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta pesquisa apresenta estudo de caso cujo objetivo foi analisar a aceitação do Portal Inovação, identificando os fatores preditivos da intenção comportamental de uso e do comportamento de uso direcionadores da adoção da tecnologia por seus usuários via extensão do Modelo Unificado de Aceitação de Tecnologia, denominado pela sigla UTAUT (Unified Theory of Acceptance and Use of Technololgy) de Venkatesh et al. (2003). O objeto da pesquisa o Portal Inovação foi desenvolvido pelo Ministério da Ciência, Tecnologia e Inovação (MCTI) em parceria com o Centro de Gestão e Estudos Estratégicos (CGEE), Associação Brasileira de Desenvolvimento Industrial (ABDI) e Instituto Stela, visando atender às demandas do Sistema Nacional de Ciência, Tecnologia e Inovação (SNCTI) do País. Para atingir os objetivos propostos, recorreu-se às abordagens qualitativa, que foi subsidiada pelo método estudo de caso (YIN, 2005) e quantitativa, apoiada pela metodologia UTAUT, aplicada a usuários do portal e que contemplou o resultado de 264 respondentes validados. Quanto ao material de análise, utilizou-se da pesquisa bibliográfica sobre governo eletrônico (e-Gov), Internet, Sistema Nacional de Inovação, modelos de aceitação de tecnologia, dados oficiais públicos e legislações atinentes ao setor de inovação tecnológica. A técnica de análise empregada quantitativamente consistiu no uso de modelagem por equações estruturais, com base no algoritmo PLS (Partial Least Square) com bootstrap de 1.000 reamostragens. Os principais resultados obtidos demonstraram alta magnitude e significância preditiva sobre a Intenção Comportamental de Uso do Portal pelos fatores: Expectativa de Desempenho e Influência Social. Além de evidenciarem que as condições facilitadoras impactam significativamente sobre o Comportamento de Uso dos usuários. A conclusão principal do presente estudo é a de que ao considerarmos a aceitação de um portal governamental em que a adoção é voluntária, o fator social é altamente influente na intenção de uso da tecnologia, bem como os aspectos relacionados à produtividade consequente do usuário e o senso de utilidade; além da facilidade de interação e domínio da ferramenta. Tais constatações ensejam em novas perspectivas de pesquisa e estudos no âmbito das ações de e-Gov, bem como no direcionamento adequado do planejamento, monitoramento e avaliação de projetos governamentais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the optical domain has been traditionally reserved for node-to-node transmission with the processing and switching achieved entirely in the electrical domain. However, with the constantly increasing demand for bandwidth and the resultant increase in transmission speeds, there is a very real fear that current electronic technology as used for processing will not be able to cope with future demands. Fuelled by this requirement for faster processing speeds, considerable research is currently being carried out into the potential of All-optical processing. One of the fundamental obstacles in realising All-optical processing is the requirement for All-optical buffering. Without all-optical buffers it is extremely difficult to resolve situations such as contention and congestion. Many devices have been proposed to solve this problem however none of them provide the perfect solution. The subject of this research is to experimentally demonstrate a novel all-optical memory device. Unlike many previously demonstrated optical storage devices the device under consideration utilises only a single loop mirror and a single SOA as its switch, whilst providing full regenerative capabilities required for long-term storage. I will explain some of the principles and characteristics of the device, which will then be experimentally demonstrated. The device configuration will then be studied and investigated as to its suitability for Hybrid Integrated Technology.