887 resultados para Electrical and Computer Engineering
Resumo:
In this paper, a hybrid heuristic methodology that employs fuzzy logic for solving the AC transmission network expansion planning (AC-TEP) problem is presented. An enhanced constructive heuristic algorithm aimed at obtaining a significant quality solution for such complicated problems considering contingency is proposed. In order to indicate the severity of the contingency, 2 performance indices, namely the line flow performance index and voltage performance index, are calculated. An interior point method is applied as a nonlinear programming solver to handle such nonconvex optimization problems, while the objective function includes the costs of the new transmission lines as well as the real power losses. The performance of the proposed method is examined by applying it to the well-known Garver system for different cases. The simulation studies and result analysis demonstrate that the proposed method provides a promising way to find an optimal plan. Obtaining the best quality solution shows the capability and the viability of the proposed algorithm in AC-TEP. © Tübi̇tak..
Resumo:
Devido não ser comum o estudo de sistemas de potência em plantas reais como usinas hidrelétricas por causa dos riscos e custos que envolvem sua operação, dá-se preferência pela realização computacional de modelos matemáticos desse tipo de planta na resolução de problemas, desenvolvimento de novas tecnologias e formação de recursos humanos. No entanto, modelos realizados computacionalmente não proveem a experiência, visual, auditiva e tátil que um modelo físico real pode oferecer. Portanto, neste trabalho, apresenta-se a descrição e a modelagem de um sistema de geração em escala reduzida de 10kVA, que é um sistema físico real, composto por um motor CC, um gerador síncrono e transformadores, chamado também de sistema micromáquina, o qual faz parte da infraestrutura do Laboratório de Engenharia Elétrica da UFPA. Para este sistema, por intermédio deste trabalho de mestrado e do trabalho de mestrado de Moraes (2011), foram desenvolvido subsistemas eletrônicos e computacionais de acionamento, automação e controle para operá-lo de forma segura resultando em uma excelente plataforma didática para dar suporte às pesquisas em dinâmica e controle de sistemas de potência, bem como o desenvolvimento de trabalhos acadêmicos e de ensino. Nesse mesmo contexto, é apresentada uma proposta de técnica de emulação de turbina hidráulica, tendo como base o controle de potência aplicado ao motor CC do sistema micromáquina. Tal técnica foi desenvolvida principalmente com o propósito de dar suporte ao estudo e desenvolvimento de técnicas de regulação de velocidade de turbinas hidráulicas. Consequentemente, também é apresenta uma proposta de um regulador de velocidade digital para turbinas hidráulicas baseado na estrutura canônica RST de controle digital, cujos parâmetros são projetados por duas técnicas de projeto estudadas neste trabalho: o método de alocação polinomial de polos e o projeto de compensadores por atraso de fase pelo método de resposta em frequência para sistemas discretos. Logo para comprovar a eficácia das ferramentas de hardware, software e teóricas desenvolvidas neste trabalho, resultados de experimentos realizados no sistema micromáquina são apresentados e analisados.
Resumo:
Today statistics are one of the most important bases of the engineer formation. Statistics are used indirectly every day for engineers in a large panel of sectors like construction, mechanical engineering, biological engineering, electrical engineering, computer science etc. The main goal of this report is to compare different ways the engineers of tomorrow are formed in order to show which engineering is the best practice. The comparison will be done on different universities in France, Brazil and the US on Mechanical, Civil, Electrical and Production branches. We will compare the amount of courses required, the degree of knowledge needed and the mains subjects
Resumo:
Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.
Resumo:
Veneer fracture is the most common complication in zirconia-based restorations. The aim of this study was to evaluate the mechanical behavior of a zirconia-based crown in a lower canine tooth supporting removable partial denture (RPD) prosthesis, varying the bond quality of the veneer/coping interface. Microtomography (μCT) data of an extracted left lower canine were used to build the finite element model (M) varying the core material (gold core - MAu; zirconia core - MZi) and the quality of the veneer/core interface (complete bonded - MZi; incomplete bonded - MZi-NL). The incomplete bonding condition was only applied for zirconia coping by using contact elements (Target/Contact) with 0.3 frictional coefficients. Stress fields were obtained using Ansys Workbench 10.0. The loading condition (L = 1 N) was vertically applied at the base of the RPD prosthesis metallic support towards the dental apex. Maximum principal (σmax) and von Mises equivalent (σvM) stresses were obtained. The σmax (MPa) for the bonded condition was similar between gold and zirconia cores (MAu, 0.42; MZi, 0.40). The incomplete bonded condition (MZi-NL) raised σmax in the veneer up to 800% (3.23 MPa) in contrast to the bonded condition. The peak of σvM increased up to 270% in the MZi-NL. The incomplete bond condition increasing the stress in the veneer/zirconia interface.
Resumo:
This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Resumo:
Mashups are becoming increasingly popular as end users are able to easily access, manipulate, and compose data from several web sources. To support end users, communities are forming around mashup development environments that facilitate sharing code and knowledge. We have observed, however, that end user mashups tend to suffer from several deficiencies, such as inoperable components or references to invalid data sources, and that those deficiencies are often propagated through the rampant reuse in these end user communities. In this work, we identify and specify ten code smells indicative of deficiencies we observed in a sample of 8,051 pipe-like web mashups developed by thousands of end users in the popular Yahoo! Pipes environment. We show through an empirical study that end users generally prefer pipes that lack those smells, and then present eleven specialized refactorings that we designed to target and remove the smells. Our refactorings reduce the complexity of pipes, increase their abstraction, update broken sources of data and dated components, and standardize pipes to fit the community development patterns. Our assessment on the sample of mashups shows that smells are present in 81% of the pipes, and that the proposed refactorings can reduce that number to 16%, illustrating the potential of refactoring to support thousands of end users developing pipe-like mashups.
Resumo:
The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.
Resumo:
Fibrous materials have morphological similarities to natural cartilage extracellular matrix and have been considered as candidate for bone tissue engineering scaffolds. In this study, we have evaluated a novel electrospun chitosan mat composed of oriented sub-micron fibers for its tensile property and biocompatibility with chondrocytes (cell attachment, proliferation and viability). Scanning electronic microscope images showed the fibers in the electrospun chitosan mats were indeed aligned and there was a slight cross-linking between the parent fibers. The electrospun mats have significantly higher elastic modulus (2.25 MPa) than the cast films (1.19 MPa). Viability of cells on the electrospun mat was 69% of the cells on tissue-culture polystyrene (TCP control) after three days in culture, which was slightly higher than that on the cast films (63% of the TCP control). Cells on the electrospun mat grew slowly the first week but the growth rate increased after that. By day 10, cell number on the electrospun mat was almost 82% that of TCP control, which was higher than that of cast films (56% of TCP). The electrospun chitosan mats have a higher Young’s modulus (P <0.01) than cast films and provide good chondrocyte biocompatibility. The electrospun chitosan mats, thus, have the potential to be further processed into three-dimensional scaffolds for cartilage tissue repair.
Resumo:
Creating high-quality quad meshes from triangulated surfaces is a highly nontrivial task that necessitates consideration of various application specific metrics of quality. In our work, we follow the premise that automatic reconstruction techniques may not generate outputs meeting all the subjective quality expectations of the user. Instead, we put the user at the center of the process by providing a flexible, interactive approach to quadrangulation design. By combining scalar field topology and combinatorial connectivity techniques, we present a new framework, following a coarse to fine design philosophy, which allows for explicit control of the subjective quality criteria on the output quad mesh, at interactive rates. Our quadrangulation framework uses the new notion of Reeb atlas editing, to define with a small amount of interactions a coarse quadrangulation of the model, capturing the main features of the shape, with user prescribed extraordinary vertices and alignment. Fine grain tuning is easily achieved with the notion of connectivity texturing, which allows for additional extraordinary vertices specification and explicit feature alignment, to capture the high-frequency geometries. Experiments demonstrate the interactivity and flexibility of our approach, as well as its ability to generate quad meshes of arbitrary resolution with high-quality statistics, while meeting the user's own subjective requirements.
Resumo:
Ubiquitous Computing promises seamless access to a wide range of applications and Internet based services from anywhere, at anytime, and using any device. In this scenario, new challenges for the practice of software development arise: Applications and services must keep a coherent behavior, a proper appearance, and must adapt to a plenty of contextual usage requirements and hardware aspects. Especially, due to its interactive nature, the interface content of Web applications must adapt to a large diversity of devices and contexts. In order to overcome such obstacles, this work introduces an innovative methodology for content adaptation of Web 2.0 interfaces. The basis of our work is to combine static adaption - the implementation of static Web interfaces; and dynamic adaptation - the alteration, during execution time, of static interfaces so as for adapting to different contexts of use. In hybrid fashion, our methodology benefits from the advantages of both adaptation strategies - static and dynamic. In this line, we designed and implemented UbiCon, a framework over which we tested our concepts through a case study and through a development experiment. Our results show that the hybrid methodology over UbiCon leads to broader and more accessible interfaces, and to faster and less costly software development. We believe that the UbiCon hybrid methodology can foster more efficient and accurate interface engineering in the industry and in the academy.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
This study evaluated the functional and quantitative differences between the early and delayed use of phototherapy in crushed median nerves. After a crush injury, low-level laser therapy (GaAs) was applied transcutaneously at the injury site, 3 min daily, with a frequency of five treatments per week for 2 weeks. In the early group, the first laser treatment started immediately after surgery, and in the delayed group, after 7 days. The grasping test was used for functional evaluation of the median nerve, before, 10, and 21 days after surgery, when the rats were killed. Three segments of the median nerve were analyzed histomorphometrically by light microscopy and computer analysis. The following features were observed: myelinated fiber and axon diameters, myelin sheath area, g-ratio, density and number of myelinated fibers, and area and number of capillaries. In the proximal segment (site of crush), the nerves of animals submitted to early and delayed treatment showed myelinated fiber diameter and myelin sheath area significantly larger compared to the untreated group. In the distal segment, the myelin sheath area was significantly smaller in the untreated animals compared to the delayed group. The untreated, early, and delayed groups presented a 50, 57, and 81% degree of functional recovery, respectively, at 21 days after injury, with a significant difference between the untreated and delayed groups. The results suggest that the nerves irradiated with low-power laser exhibit myelinated fibers of greater diameter and a better recovery of function.
Resumo:
[EN] This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables.The simultaneous minimization of the constrained weight (adding structuralweight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including