854 resultados para Electric energy distribution systems
Resumo:
In the present work the structural and spectral characteristics of acetazolamide have been studied by methods of infrared, Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) employing B3LYP with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. Based on these results, we have discussed the correlation between the vibrational modes and the structure of the dimers of acetazolamide. The calculated vibrational spectra of three dimers of acetazolamide have been compared with observed spectra, and the assignment of observed bands was carried out using potential energy distribution. The observed spectra agree well with the values computed from the OFT. A comparison of observed and calculated vibrational spectra clearly shows the effect of hydrogen bonding. The frequency shifts observed for the different dimers are in accord with the hydrogen bonding in acetazolamide. Natural bond orbital (NBO) analyses reflect the charge transfer interaction in the individual hydrogen bond units and the stability of different dimers of acetazolamide. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Population growth and rapid urbanization lead to considerable stress on already depleting water resources. A great challenge for water authorities of urban cities is to supply adequate and reliable safe water to all consumers. In most of the developing countries water scarcity and high demands have led the water authorities to resort to intermittent supplies. Surface and groundwater are the major sources of supply in urban cities. The direct consequences of intermittent supplies and poor sanitation practices are several incidences of water borne diseases posing public health risk. In order to minimize the supply-demand gap and to assure good quality of water, new techniques or models can be helpful to manage the water distribution systems (WDS) in a better way. In the present paper, a review is carried out on the existing urban water supply management methodologies with a way forward for the proper management of the water supply systems.
Resumo:
FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Use of circular hexagonal honeycomb structures and tube assemblies in energy absorption systems has attracted a large number of literature on their characterization under crushing and impact loads. Notwithstanding these, effective shear moduli (G*) required for complete transverse elastic characterization and in analyses of hierarchical structures have received scant attention. In an attempt to fill this void, the present study undertakes to evaluate G* of a generalized circular honeycomb structures and tube assemblies in a diamond array structure (DAS) with no restriction on their thickness. These structures present a potential to realize a spectrum of moduli with minimal modifications, a point of relevance for manufactures and designers. To evaluate G* in this paper, models based on technical theories - thin ring theory and curved beam theory - and rigorous theory of elasticity are investigated and corroborated with FEA employing contact elements. Technical theories which give a good match for thin HCS offer compact expressions for moduli which can be harvested to study sensitivity of moduli on topology. On the other hand, elasticity model offers a very good match over a large range of thickness along with exact analysis of stresses by employing computationally efficient expressions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise characteristic length linear stable mode may dominate the wake in place of mode A and determine the spanwise phase difference of the primary vortices shedding. At Re = 250 and 300 it is found that the streamwise vortices evolve into a new type of mode - "dual vortex pair mode" downstream. The streamwise vortex structures switch among mode A, mode B and dual vortex pair mode from near wake to downstream wake. At Re = 250, an independent low frequency f(m) in addition to the vortex shedding frequency f(s) is identified. Frequency coupling between f(m) and f(s) occurs. These result in the irregularity of the temporal signals and become a key feature in the transition of the wake. Based on the formation analysis of the streamwise vorticity in the vicinity of cylinder, it is suggested that mode A is caused by the emergence of the spanwise velocity due to three dimensionality of the incoming flow past the cylinder. Energy distribution on various wave numbers and the frequency variation in the wake are also described.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.
Resumo:
Pulsed laser beam was used to modify surface processing for ductile iron. The microstructures of processed specimen were observed using optical microscope (OM). Nanoindentation and micro-hardness of microstructures were measured from surface to inner of sample. The experimental results show that, modification zone is consisted of light melted zone, phase transformation hardening area and transient area. The light melt area is made up of coarse dendrite crystalline with a thickness less than 20um, phase transformation hardening area mainly of laminal or acicular martensite, retained austenite and graphite, i.e. M+A prime+ G. The cow-eye microstructure around graphite sphere always is formed in phase transformation hardening area zone, which consisting of a variety structure with the distance from the surface. So, it maybe as a obvious sign distinguishing modification zone border. Finally, the microstructures evolution of laser pulse processed ductile iron was analyzed coupling with beam energy distribution in space and laser pulse heating procession characteristics. The analysis shows that energy distribution of laser pulse has an important effect on microstructure during laser pulse modified ductile iron. Multi-scale and interlace arrangement are the important features for laser pulse modified ductile iron. Of microstructure.
Resumo:
The direct simulation Monte Carlo (DSMC) method is a widely used approach for flow simulations having rarefied or nonequilibrium effects. It involves heavily to sample instantaneous values from prescribed distributions using random numbers. In this note, we briefly review the sampling techniques typically employed in the DSMC method and present two techniques to speedup related sampling processes. One technique is very efficient for sampling geometric locations of new particles and the other is useful for the Larsen-Borgnakke energy distribution.
Resumo:
Apart from activities of some foreign-based vessels, commercial exploitation of pelagic fishery resources in Nigeria has been limited to inland and inshore waters. Estimated potential for the inshore pelagic fishery is 70,000-90,000 tonnes while the small pelagic resources in the near offshore as well as tuna and tuna-like fishes further offshore have potentials of about 10,000 metric tonnes each. Despite the abundance of tuna within and adjoining the Nigerian EEZ, and its importance in the international market, only foreign-flagged vessels take advantage. In addition, the inshore pelagic fisheries in Nigeria have for long remained underexploited. The most common processing method has remained the age-old traditional smoke-drying, which is inadequate resulting in colossal waste through denaturation and incessant infestations by insects and moulds among other causes. The use of modern smoking techniques coupled with effective distribution systems can undoubtedly reduce waste. However, these are often not within the reach of most artisanal processors. It is proposed that the organised private sector should invest on simple but proven processing equipment such as smoking kilns. The inshore pelagic fish species and other small fishes can sustain cottage canning industries sited in fishing villages/settlements while larger canning factories should be based on offshore resources. Modalities for successful investments are highlighted, while a major consideration is given to joint ventures
Resumo:
The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subclusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the case of homonuclear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuclear clusters with larger sizes are required to achieve a greater neutron yield.
Resumo:
25 p.
Resumo:
When studying physical systems, it is common to make approximations: the contact interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is constant with velocity, or the position of a particle is exactly known are just a few examples. These approximations help us simplify complex systems to make them more comprehensible while still demonstrating interesting physics. But what happens when these assumptions break down? This question becomes particularly interesting in the materials science community in designing new materials structures with exotic properties In this thesis, we study the mechanical response and dynamics in granular crystals, in which the approximation of linearity and infinite size break down. The system is inherently finite, and contact interaction can be tuned to access different nonlinear regimes. When the assumptions of linearity and perfect periodicity are no longer valid, a host of interesting physical phenomena presents itself. The advantage of using a granular crystal is in its experimental feasibility and its similarity to many other materials systems. This allows us to both leverage past experience in the condensed matter physics and materials science communities while also presenting results with implications beyond the narrower granular physics community. In addition, we bring tools from the nonlinear systems community to study the dynamics in finite lattices, where there are inherently more degrees of freedom. This approach leads to the major contributions of this thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile can be tuned from highly localized to completely delocalized by simply tuning an external parameter. Using the sensitive dynamics near bifurcation points, we present a completely new approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the force-displacement relation. Other contributions include demonstrating nonlinear breakdown of mechanical filters as a result of finite size, and the presents of frequency attenuation bands in essentially nonlinear materials. We finish by presenting two new energy harvesting systems based on our experience with instabilities in weakly nonlinear systems.
Resumo:
A presente dissertação discute as questões relacionadas à intensificação das mudanças climáticas por causas antrópicas conforme a evolução no uso dos recursos naturais, inovações nos processos produtivos, transformações econômicas, sociais, culturais, políticas e, especialmente ambientais. Aborda a comercialização dos créditos de carbono através de projetos de Mecanismo de Desenvolvimento Limpo (MDL), um dos mecanismos de flexibilização criados pelo Protocolo de Kyoto. No contexto de mudanças climáticas, uma matriz energética que utilize fontes de energia que não emitam gases causadores do efeito estufa (GEE) se mostra uma importante estratégia de desenvolvimento sustentável. Sob essa perspectiva, a energia nucleoelétrica é apresentada como uma alternativa viável aos combustíveis fósseis, considerando que esta é uma energia limpa e compatível com a perspectiva de desenvolvimento sustentável. A Fábrica de Combustível Nuclear (FCN), localizada em Resende (Rio de Janeiro), pertencente às Indústrias Nucleares do Brasil (INB), é um conjunto de sofisticadas fábricas nas quais se processam etapas importantes do ciclo do combustível nuclear. Na FCN, o Centro Zoobotânico realiza a gestão das atividades voltadas para a conservação da natureza tais como o Programa de Recuperação de Mata Ciliar, Reflorestamento e Fauna. O Relatório de inventário das emissões diretas e indiretas de GEE da FCN, elaborado pela INB para o ano de 2008, permite a auto-avaliação da empresa, retratando a preocupação corporativa com as questões relativas às mudanças climáticas. Segundo este Relatório, o total de emissões de GEE quantificado corresponde a 12,14% da capacidade total de sequestro de dióxido de carbono, no período de Janeiro a Dezembro de 2008. A proteção de florestas e a plantação de árvores são componentes essenciais de qualquer estratégia global para mitigação da mudança climática, e a participação da INB no mercado de crédito de carbono pode proporcionar externalidades positivas, tais como ganhos de imagem, adequação a padrões ambientais e melhoria do relacionamento com a sociedade.
Resumo:
星间激光通讯中,精跟踪起着十分重要的作用,而精密偏转镜(FSM)是精跟踪系统中最为关键的部件.基于光学矢量反射定律,推导得到了FSM的精确光学特性,这一特性为精跟踪控制系统提供了精确的理论依据.设计了基于FSM精确光学特性的精跟踪控制系统,对系统整定所用的单纯形法进行了两点重要改进,并对所设计的精跟踪系统进行了数字模拟,由此实现了对FSM的精确控制,提高了精跟踪系统的精确性;将光学衍射超分辨原理应用到星间激光通讯中.利用三区位相光瞳滤波器的超分辨性能,改变光学系统的点扩散函数,从而改变接收端焦平面上的光强