949 resultados para Electric conductance
Resumo:
In this work we study the structure of electromagnetic interactions and electric charge quantization in gauge theories of electroweak interactions based on semisimple groups. We show that in the standard model of electroweak interactions the structure of electromagnetic interactions is strongly correlated to the quantization pattern of electric charges. We examine these two questions also in all possible chiral bilepton gauge models of electroweak interactions. In all, we can explain the vectorlike nature of electromagnetic interactions and electric charge quantization together demanding nonvanishing fermion masses and anomaly cancellations. ©1999 The American Physical Society.
Resumo:
This work uses a monitoring system based on a PC platform, where the acoustic emission and electric power signals generated during the grinding process are used to investigate superficial burning occurrence in a surface grinding operation using two types of steel, three grinding conditions and an Al203 vitrified grinding wheel. Acoustic emission signals on the workpiece and grinding power were measured during a surface plunge operation until the grinding burn happened. From the results the standard deviation of the acoustic emission signal and the maximum electric power were calculated for each grinding pass. The proposed DPO parameter is the product between the power level and acoustic emission standard deviation. The results show that both signals can be used for burning detection, and the parameter DPO is the best indicator for the burning studied in this work. This can be explained by the high dispersion of the acoustic emission RMS level associated to the high power consumption when the grinding wheel lose its sharpness.
Resumo:
The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.
Resumo:
The pulsed electric acoustic technique, PEA, has been usually applied to probe space charge profiles in polymers. Preliminary PEA results using a ferroelectric ceramic are presented. If the reverse applied electric field i of the order of the coercive field the switching polarization process occurs in a period larger than hundreds of seconds. Such a slow process allows one to use the PEA setup to follow the polarization switching dynamics and determine the electric field profile. The PEA signal obtained in the lead zirconate-titanate doped with niobium ceramic, PZTN, indicates that the polarization distribution and field are not uniform during the switching period. We were also able to observe that the acoustic wave velocity and attenuation depends on the stage of the polarization switching, which agrees with results obtained using the ultrasonic method.
Resumo:
We present results of thermally stimulated depolarization current (TSDC) measurements in synthetic and natural alexandrite, which show TSDC bands related to the presence of electric dipoles in both types of samples. Synthetic material shows a wide TSDC band with a peak at 179 K, which can be fitted by two distinct relaxing dipole distributions. For natural alexandrite the TSDC band has a maximum around 195 K and can be fitted by three different distributions. Both samples present one of the calculated curves with a peak about 179 K, with activation energy of 0.57 eV and constant relaxation time of 1 × 10-14 sec. Photo-induced TSDC shows that TSDC bands can also be generated by simultaneous application of light and an electric field at 77 K.
Resumo:
The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.
Resumo:
This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.
Resumo:
Phasor Measurement Units (PMUs) optimized allocation allows control, monitoring and accurate operation of electric power distribution systems, improving reliability and service quality. Good quality and considerable results are obtained for transmission systems using fault location techniques based on voltage measurements. Based on these techniques and performing PMUs optimized allocation it is possible to develop an electric power distribution system fault locator, which provides accurate results. The PMUs allocation problem presents combinatorial features related to devices number that can be allocated, and also probably places for allocation. Tabu search algorithm is the proposed technique to carry out PMUs allocation. This technique applied in a 141 buses real-life distribution urban feeder improved significantly the fault location results. © 2004 IEEE.
Resumo:
This work deals with the effects of the series compensation on the electric power system for small-signal stability studies. Therefore, the system is modeled admitting the existence of the compensation and then, the equations are linearized and a linear model is obtained for a single machine-infinite bus power system with a compensator installed. The resulting model with nine defined constants is very similar to the Heffron & Phillips linear model widely used on the existent literature. Finally, simulations are executed for an example system, to analyze the behavior of these constants when loading the system. © 2004 IEEE.
Resumo:
The interaction between humic substances and poly(o-ethoxyaniline) (POEA), a conducting polymer, was investigated for both solution and self-assembled films. The results have shown that the humic substances induce a doping of POEA by protonation, as indicated by UV-Vis and Raman spectroscopies. The atomic force microscopy (AFM) studies on the self-assembled films have shown that the average roughness of the polymer film has increased after exposing it to humic substances (fulvic and humic acids), consistent with the interaction between POEA and humic substances. However, this change in morphology is reversible by washing the films with water in agreement with the electrical data allowing using this system in sensor applications. Here, the sensor formed by an array of different sensing units was able to detect and distinguish humic substances in aqueous solution, as shown by multivariate analysis (principal component analysis). The motivation to detect humic substance comes due to its importance in terms of quality control of water or soil. ©2005 Sociedade Brasileira de Química.
Resumo:
Vertical and in-plane electrical transport in InAs/InP semiconductors wires and dots have been investigated by conductive atomic force microscopy (C-AFM) and electrical measurements in processed devices. Localized I-V spectroscopy and spatially resolved current images (at constant bias), carried out using C-AFM in a controlled atmosphere at room temperature, show different conductances and threshold voltages for current onset on the two types of nanostructures. The processed devices were used in order to access the in-plane conductance of an assembly with a reduced number of nanostructures. On these devices, signature of two-level random telegraph noise (RTN) in the current behavior with time at constant bias is observed. These levels for electrical current can be associated to electrons removed from the wetting layer and trapped in dots and/or wires. A crossover from conduction through the continuum, associated to the wetting layer, to hopping within the nanostructures is observed with increasing temperature. This transport regime transition is confirmed by a temperature-voltage phase diagram. © 2005 Materials Research Society.
Resumo:
A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested; lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mWm -2 with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 × 10 -2 C kg -2 air) as measured by piezo-electric (d 33) or pyro-electric coefficients. © IFMBE 2005.
Resumo:
With the considerable increase of the losses in electric utilities of developing countries, such as Brazil, there is an investigation for loss calculation methodologies, considering both technical (inherent of the system) and non-technical (usually associated to the electricity theft) losses. In general, all distribution networks know the load factor, obtained by measuring parameters directly from the network. However, the loss factor, important for the energy loss cost calculation, can only be obtained in a laborious way. Consequently, several formulas have been developed for obtaining the loss factor. Generally, it is used the expression that relates both factors, through the use of a coefficient k. Last reviews introduce a range of factor k within 0.04 - 0.30. In this work, an analysis with real life load curves is presented, determining new values for the coefficient k in a Brazilian electric utility. © 2006 IEEE.
Resumo:
The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.
Resumo:
This paperwork presents a Pulse Width Modulation (PWM) speed controller for an electric mini-baja-type car. A battery-fed 1-kW three-phase induction motor provides the electric vehicle traction. The open-loop speed control is implemented with an equal voltage/frequency ratio, in order to maintain a constant amount of torque on all velocities. The PWM is implemented by a low-cost 8-bit microcontroller provided with optimized ROM charts for distinct speed value implementations, synchronized transition between different charts and reduced odd harmonics generation. This technique was implemented using a single passenger mini-baja vehicle, and the essays have shown that its application resulted on reduced current consumption, besides eliminating mechanical parts. Copyright © 2007 by ABCM.