929 resultados para Eggs of fossils crocodylomorphs
Resumo:
When freshly eclosed females of the primitively eusocial wasp, Rapalidia marginata are isolated into individual cages, only about half of them build nests and lay eggs and those that do so take a long and variable amount of time (Mean +/- SD = 66 +/- 37 days) before they lay their first egg. Part of the reason for this delay is because, when kept in isolation, no wasp begins to lay eggs during a period of approximately 82 days from mid - October to early January. Wasps maintained at a constant temperature of 26 +/- 1-degrees-C however initiate egg laying throughout the year, suggesting that the low temperatures during mid - October to early January may be at least one factor that makes this period unfavourable for wasps maintained at room temperature. Egg laying continues more or less normally throughout October-January however, in all natural and laboratory colonies studied. Natural colonies of R. marginata are initiated throughout the year and often by groups of females. Huddling together is a striking feature of the wasps especially on cold mornings. We therefore suggest that the isolated animals in our experiment are unable to lay eggs during the coldest part of the year because of their inability to huddle together, share metabolic heat and perform "co-operative thermoregulation". Such "co-operative thermoregulation" may thus be another factor that facilitates the evolution of socialitly.
Resumo:
1. When freshly eclosed females of the primitively eusocial wasp Ropalidia marginata (Lep.) are isolated, only about 50% of them build nests and lay eggs thereby suggesting a pre-imaginal biasing of caste. 2. Wasps that lay eggs take a very variable amount of time after eclosion to start doing so. 3. Females eclosing from nests where larvae are fed at a relatively higher rate are more likely to become egg-layers and are likely to take less time after eclosion to begin to lay eggs. 4. Thus, both forms of pre-imaginal biasing of caste, namely, differences in egg laying capacity and differences in the time taken to attain reproductive maturity, appear to be influenced by larval nutrition.
Resumo:
As a prelude to achieving transgenesis in Bombyx mori, conditions have been established for successful microinjection of cloned foreign genes into the silk worm eggs. A sharpened metallic needle is used to pierce the thick chorion layer of the eggsheil, approaching through a droplet of DNA solution deposited on its surface. The microinjection is carried out within 2-2.5 h after oviposition and the injected eggs show 3-5% hatchability and 80-90% survival. Such larvae continuously expressed the microinjected cloned reporter gene, beta-galactosidase, placed under the control of a constitutively expressed cytoplasmic actin A3 gene promoter from B. mori. The expression is seen in different tissues, viz. the fat body, tracheae and the silk glands, till the late larval instars. The microinjected DNA sequences are retained in the adult G(o) moths.
Resumo:
Among squamate reptiles, lizards exhibit an impressive array of sex-determining modes viz. genotypic sex determination, temperature-dependent sex determination, co-occurrence of both these and those that reproduce parthenogenetically. The oviparous lizard, Calotes versicolor, lacks heteromorphic sex chromosomes and there are no reports on homomorphic chromosomes. Earlier studies on this species presented little evidence to the sex-determining mechanism. Here we provide evidences for the potential role played by incubation temperature that has a significant effect (P<0.01) on gonadal sex and sex ratio. The eggs were incubated at 14 different incubation temperatures. Interestingly, 100% males were produced at low (25.5 +/- 0.5 degrees C) as well as high (34 +/- 0.5 degrees C) incubation temperatures and 100% females were produced at low (23.5 +/- 0.5 degrees C) and high (31.5 +/- 0.5 degrees C) temperatures, clearly indicating the occurrence of TSD in this species. Sex ratios of individual clutches did not vary at any of the critical male-producing or female-producing temperatures within as well as across the seasons. However, clutch sex ratios were female- or male-biased at intermediate temperatures. Thermosensitive period occurred during the embryonic stages 3033. Three pivotal temperatures operate producing 1:1 sex ratio. Histology of gonad and accessory reproductive structures provide additional evidence for TSD. The sex-determining pattern, observed for the first time in this species, that neither compares to Pattern I [Ia (MF) and Ib (FM)] nor to Pattern II (FMF), is being referred to as FMFM pattern of TSD. This novel FMFM pattern of sex ratio exhibited by C. versicolor may have an adaptive significance in maintaining sex ratio. J. Exp. Zool. 317:3246, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The intense interest in social Hymenoptera, on account of their elaborate sociality and the paradox of altruism, has often suffered from considerable gender imbalance. This is partly due to the fact that worker behaviour and altruism are restricted to the females and partly because males often live off the nest. Yet, understanding the males, especially in the context of mating biology is essential even for understanding the evolution of sociality. Mating patterns have a direct bearing on the levels of intra-colony genetic relatedness, which in turn, along with the associated costs and benefits of worker behaviour, are central to our understanding of the evolution of sociality. Although mating takes place away from the nest in natural colonies of the primitively eusocial wasp Ropalidia marginata, mating can be observed in the laboratory if a male and a female are placed in a transparent, aerated plastic container, and both wasps are in the range of 5-20 days of age. Here, we use this setup and show that males, but not females, mate serially with multiple partners. The multiple mating behaviour of the males is not surprising because in nature males have to mate with a number of females, only a few of whom will go on to lay eggs. The reluctance of R. marginata females to mate with multiple partners is consistent with the expectation of monogamy in primitively eusocial species with totipotent females, although the apparent discrepancy with a previous work with allozyme markers in natural colonies suggesting that females may sometimes mate with two or three different males remains to be resolved.
Resumo:
Fruit flies that belong to the genus Bactrocera (Diptera: Tephritidae) are major invasive pests of agricultural crops in Asia and Australia. Increased transboundary movement of agricultural produce has resulted in the chance introduction of many invasive species that include Bactrocera mainly as immature stages. Therefore quick and accurate species diagnosis is important at the port of entry, where morphological identification has a limited role, as it requires the presence of adult specimens and the availability of a specialist. Unfortunately when only immature stages are present, a lacunae in their taxonomy impedes accurate species diagnosis. At this juncture, molecular species diagnostics based on COX-I have become handy, because diagnosis is not limited by developmental stages. Yet another method of quick and accurate species diagnosis for Bactrocera spp. is based on the development of species-specific markers. This study evaluated the utility of COX-I for the quick and accurate species diagnosis of eggs, larvae, pupae and adults of B. zonata Saunders, B. tau Walker, and B. dorsalis Hendel. Furthermore the utility of species-specific markers in differentiating B. zonata (500bp) and B. tau (220bp) was shown. Phylogenetic relationships among five subgenera, viz., Austrodacus, Bactrocera, Daculus, Notodacus and Zeugodacus have been resolved employing the 5' region of COX-I (1490-2198); where COX-I sequences for B. dorsalis Hendel, B. tau Walker, B. correcta Bezzi and B. zonata Saunders from India were compared with other NCBI-GenBank accessions. Phylogenetic analysis employing Maximum Parsimony (MP) and Bayesian phylogenetic approach (BP) showed that the subgenus Bactrocera is monophyletic.
Resumo:
There are many biomechanical challenges that a female insect must meet to successfully oviposit and ensure her evolutionary success. These begin with selection of a suitable substrate through which the ovipositor must penetrate without itself buckling or fracturing. The second phase corresponds to steering and manipulating the ovipositor to deliver eggs at desired locations. Finally, the insect must retract her ovipositor fast to avoid possible predation and repeat this process multiple times during her lifetime. From a materials perspective, insect oviposition is a fascinating problem and poses many questions. Specifically, are there diverse mechanisms that insects use to drill through hard substrates without itself buckling or fracturing? What are the structure-property relationships in the ovipositor material? These are some of the questions we address with a model system consisting of a parasitoid fig wasp - fig substrate system. To characterize the structure of ovipositors, we use scanning electron microscopy with a detector to quantify the presence of transition elements. Our results show that parasitoid ovipositors have teeth like structures on their tips and contain high amounts of zinc as compared to remote regions. Sensillae are present along the ovipositor to aid detection of chemical species and mechanical deformations. To quantify the material properties of parasitoid ovipositors, we use an atomic force microscope and show that tip regions have higher modulus as compared to remote regions. Finally, we use videography to show that ovipositors buckle during oviposition and estimate the forces needed to cause substrate boring based on Euler buckling analysis. Such methods may be useful for the design of functionally graded surgical tools.
Resumo:
In the primitively eusocial wasp Ropalidia marginata, mating is not necessary for a female wasp to develop her ovaries, lay eggs, and even to become the sole egg layer of her colony despite the presence of other mated nestmates. Here, we show that virgin wasps do not differ from their mated counterparts in the extent and rapidity of their ovarian development, in the proportion of individuals that build a nest and laid eggs, and in the time taken to do so. However, a significantly larger proportion of virgin females showed resorbing oocytes, and laid fewer eggs as compared to mated individuals. Thus, virgin females have the ability to develop ovaries and lay eggs but also to refrain from necessarily laying all mature eggs produced, before mating opportunities arise. This dual ability would be adaptive in haplodiploid, tropical species with perennial nesting cycles and frequent opportunities for workers to become replacement queens or solitary nest foundresses throughout the year.
Resumo:
Fruit fly Drosophila melanogaster females display rhythmic egg-laying under 12: 12 h light/dark (LD) cycles which persists with near 24 h periodicity under constant darkness (DD). We have shown previously that persistence of this rhythm does not require the neurons expressing pigment dispersing factor (PDF), thought to be the canonical circadian pacemakers, and proposed that it could be controlled by peripheral clocks or regulated/triggered by the act of mating. We assayed egg-laying behaviour of wild-type Canton S (CS) females under LD, DD and constant light (LL) conditions in three different physiological states; as virgins, as females allowed to mate with males for 1 day and as females allowed to mate for the entire duration of the assay. Here, we report the presence of a circadian rhythm in egg-laying in virgin D. melanogaster females. We also found that egg-laying behaviour of 70 and 90% females from all the three male presence/absence protocols follows circadian rhythmicity under DD and LL, with periods ranging between 18 and 30 h. The egg-laying rhythm of all virgin females synchronized to LD cycles with a peak occurring soon after lights-off. The rhythm in virgins was remarkably robust with maximum number of eggs deposited immediately after lights-off in contrast to mated females which show higher egg-laying during the day. These results suggest that the egg-laying rhythm of D. melanogaster is endogenously driven and is neither regulated nor triggered by the act of mating; instead, the presence of males results in reduction in entrainment to LD cycles.
Resumo:
Reproductive modes are diverse and unique in anurans. Selective pressures of evolution, ecology and environment are attributed to such diverse reproductive modes. Globally forty different reproductive modes in anurans have been described to date. The genus Nyctibatrachus has been recently revised and belongs to an ancient lineage of frog families in the Western Ghats of India. Species of this genus are known to exhibit mountain associated clade endemism and novel breeding behaviours. The purpose of this study is to present unique reproductive behaviour, oviposition and parental care in a new species Nyctibatrachus kumbara sp. nov. which is described in the paper. Nyctibatrachus kumbara sp. nov. is a medium sized stream dwelling frog. It is distinct from the congeners based on a suite of morphological characters and substantially divergent in DNA sequences of the mitochondrial 16S rRNA gene. Males exhibit parental care by mud packing the egg clutch. Such parental care has so far not been described from any other frog species worldwide. Besides this, we emphasize that three co-occurring congeneric species of Nyctibatrachus, namely N. jog, N. kempholeyensis and Nyctibatrachus kumbara sp. nov. from the study site differ in breeding behaviour, which could represent a case of reproductive character displacement. These three species are distinct in their size, call pattern, reproductive behaviour, maximum number of eggs in a clutch, oviposition and parental care, which was evident from the statistical analysis. The study throws light on the reproductive behaviour of Nyctibatrachus kumbara sp. nov. and associated species to understand the evolution and adaptation of reproductive modes of anurans in general, and Nyctibatrachus in particular from the Western Ghats.
Resumo:
Female insects of diverse orders bore into substrates to deposit their eggs. Such insects must overcome several biomechanical challenges to successfully oviposit, which include the selection of suitable substrates through which the ovipositor can penetrate without itself fracturing. In many cases, the insect may also need to steer and manipulate the ovipositor within the substrate to deliver eggs at desired locations before rapidly retracting her ovipositor to avoid predation. In the case of female parasitoid ichneumonid wasps, this process is repeated multiple times during her lifetime, thus testing the ability of the ovipositioning apparatus to endure fracture and fatigue. What specific adaptations does the ovipositioning apparatus of a female ichneumonoid wasp possess to withstand these challenges? We addressed this question using a model system composed of parasitoid and pollinator fig wasps. First, we show that parasitoid ovipositor tips have teeth-like structures, preferentially enriched with zinc, unlike the smooth morphology of pollinator ovipositors. We describe sensillae present on the parasitoid ovipositor tip that are likely to aid in the detection of chemical species and mechanical deformations and sample microenvironments within the substrate. Second, using atomic force microscopy, we show that parasitoid tip regions have a higher modulus compared with regions proximal to the abdomen in parasitoid and pollinator ovipositors. Finally, we use videography to film wasps during substrate boring and analyse buckling of the ovipositor to estimate the forces required for substrate boring. Together, these results allow us to describe the biomechanical principles underlying substrate boring in parasitoid ichneumonid wasps. Such studies may be useful for the biomimetic design of surgical tools and in the use of novel mechanisms to bore through hard substrates.
Resumo:
Amphibians exhibit extraordinarily diverse sets of reproductive strategies among vertebrates. Understanding life history strategies in an evolutionary framework is lacking for many amphibian species in the tropics. Here, we report a novel reproductive mode where adult frogs enter hollow internodes of bamboo via a small opening, deposit direct developing eggs, and provide parental care. This behaviour is observed in two species of the frog genus Raorchestes. The first description of this unique life history and details of nest site characteristics and embryo development are provided along with ecological comparisons. Evolution of novel reproductive modes and parental care are discussed in context of natural selection. Dearth of natural history information on amphibians in the Western Ghats and much of the South-East Asian region is highlighted with suggestions for further studies.(c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114, 1-11.
Resumo:
Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In suchmultiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen's brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.
Resumo:
On 17-20 July 2007, 45 experts on sea turtles, fisheries, conservation and finance from 10 countries convened at the Bellagio Sea Turtle Conservation Initiative workshop in Terengganu to focus on methods to save the imperiled Pacific leatherback from extinction. The group developed a strategic plan to guide the prioritization and long term financing of Pacific leatherback turtle conservation and recovery objectives. Participants identified critical conservation actions and agreed that a business plan is urgently needed to reverse the trajectory towards extinction of the Pacific leatherback. The conservation actions prioritized by the participants encompassed protecting nesting beaches including eggs and nesting females; reducing direct and indirect turtle take in coastal fisheries; and strengthening regional and sub-regional cooperation. The group committed to work together on fundraising and implementation of these urgent conservation actions. This report presents outputs and the plan that was produced from the workshop.
Resumo:
Environmental studies of power plants have recently shifted their emphasis from examination of the effects of heated discharges to studies of the impacts of entire cooling systems. One of the major impacts arises when planktonic organisms are carried into and through a plant with the cooling water. Because of their relatively immobile, free-floating character, planktonic organisms are highly vulnerable to being "entrained" or passively drawn into the cooling water condenser systems of power plants. More than 70% of estuarine animals have planktonic eggs and larvae. The environmental impact of entrainment is related to the composition and abundance of affected organisms, the numbers of organisms in the adjacent waters, survival rates during entrainment as related to natural survival, the ecological roles of entrained organisms, and their reproductive strategies.