986 resultados para Effective mass (Physics)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, using the fact that in 3-3-1 models the same leptonic bilinear contributes to the masses of both charged leptons and neutrinos, we develop an effective operator mechanism to generate mass for all leptons. The effective operators have dimension five for the case of charged leptons and dimension seven for neutrinos. By adding extra scalar multiplets and imposing the discrete symmetry Z(9)xZ(2) we are able to generate realistic textures for the leptonic mixing matrix. This mechanism requires new physics at the TeV scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve Einstein equations on the brane to derive the exact form of the brane-world-corrected perturbations in Kerr-Newman singularities, using Randall-Sundrum and Arkani-Hamed-Dimopoulos-Dvali (ADD) models. It is a consequence of such models that Kerr-Newman mini-black holes can be produced in LHC. We use this approach to derive a normalized correction for the Schwarzschild Myers-Perry radius of a static (4+n)-dimensional mini-black hole, using more realistic approaches arising from Kerr-Newman mini-black hole analysis. Besides, we prove that there are four Kerr-Newman black hole horizons in the brane-world scenario we use, although only the outer horizon is relevant in the physical measurable processes. Parton cross sections in LHC and Hawking temperature are also investigated as functions of Planck mass (in the LHC range 1-10 TeV), mini-black hole mass, and the number of large extra dimensions in brane-world large extra-dimensional scenarios. In this case a more realistic brane-effect-corrected formalism can achieve more precisely the effective extra-dimensional Planck mass and the number of large extra dimensions-in the Arkani-Hamed-Dimopoulos-Dvali model-or the size of the warped extra dimension-in Randall-Sundrum formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In models of coupled dark energy and dark matter the mass of the dark matter particle depends on the cosmological evolution of the dark energy field. In this Letter we exemplify in a simple model the effects of this mass variation on the relic abundance of cold dark matter. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By considering a statistical model for the quark content of the nucleon, where the quark levels are generated by a Dirac equation with a harmonic scalar-plus-vector potential, we note that a good fit for the ratio between the structure functions of the neutron and proton, F-2(n)/F-2(p), can be obtained if different strengths are used for the effective confining potentials of the up and down quarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that there is a general sort of neutrino effective interactions which allows, under certain conditions, to have relatively large magnetic dipole moments for neutrinos while keeping their masses non-calculable and arbitrarily small. The main ingredient of our mechanism for generating large magnetic moment to the neutrinos is the existence of a neutral scalar which has the only role to give mass to the neutrinos or the existence of flavor changing neutral currents in the neutrino sector. Although our approach is model independent, some models in which those interactions arise are commented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that in SU(3)(C) circle times SU(3)(L) circle times U(1)(N) (3-3-1) models embedded with a singlet scalar playing the role of the axion, after imposing scale invariance, the breaking of Peccei-Quinn symmetry occurs through the one-loop effective potential for the singlet field. We, then, analyze the structure of spontaneous symmetry breaking by studying the new scalar potential for the model, and verify that electroweak symmetry breaking is tightly connected to the 3-3-1 breaking by the strong constraints among their vacuum expectation values. This offers a valuable guide to write down the correct pattern of symmetry breaking for multi-scalar theories. We also obtained that the accompanying massive pseudo-scalar, instead of acquiring mass of order of Peccei-Quinn scale as we would expect, develops a mass at a much lower scale, a consequence solely of the breaking via Coleman-Weinberg mechanism. (c) 2005 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the mass splitting between the the top and bottom quarks in a technicolor scenario. The model proposed here contains a left-right electroweak gauge group. An extended technicolor group and mirror fermions are introduced. The top-bottom quark mass splitting turns out to be intimately connected to the breaking of the left-right gauge symmetry. Weak isospin violation occurs within the experimental limits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the general principles of effective field theories to the construction of effective interactions suitable for few- and many-body calculations in a no-core shell model framework. We calculate the spectrum of systems with three and four two-component fermions in a harmonic trap. In the unitary limit, we find that three-particle results are within 10% of known semianalytical values even in small model spaces. The method is very general, and can be readily extended to other regimes, more particles, different species (e.g., protons and neutrons in nuclear physics), or more-component fermions (as well as bosons). As an illustration, we present calculations of the lowest-energy three-fermion states away from the unitary limit and find a possible inversion of parity in the ground state in the limit of trap size large compared to the scattering length. Furthermore, we investigate the lowest positive-parity states for four fermions, although we are limited by the dimensions we can currently handle in this case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The covariant quark model of the pion based on the effective nonlocal quark-hadron Lagrangian involving nonlocality induced by instanton fluctuations of the QCD vacuum is reviewed. Explicit gauge invariant formalism allows us to construct the conserved vector and axial currents and to demonstrate their consistency with the Ward-Takahashi identities and low-energy theorems. The spontaneous breaking of chiral symmetry results in the dynamic quark mass and the vertex of the quark-pion interaction, both momentum-dependent. The parameters of the instanton vacuum, the average size of the instantons, and the effective quark mass are expressed in terms of the vacuum expectation values of the lowest dimension quark-gluon operators and low-energy pion observables. The transition pion form factor for the processes gamma*gamma --> pi (0) and gamma*gamma* --> pi (0) is analyzed in detail. The kinematic dependence of the transition form factor at high momentum transfers allows one to determine the relationship between the light-cone amplitude of the quark distribution in the pion and the quark-pion vertex function. Its dynamic dependence implies that the transition form factor gamma*gamma --> pi (0) at high momentum transfers is acutely sensitive to the size of the nonlocality of nonperturbative fluctuations in the QCD vacuum. In the leading twist, the distribution amplitude and the distribution function of the valence quarks in the pion are calculated at a low normalization point of the order of the inverse average instanton size rho (-1)(c). The QCD results are evolved to higher momentum transfers and are in reasonable agreement with available experimental data on the pion structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the expression of the dynamical gluon mass obtained through the operator product expansion we discuss the relevance of gluon mass effects in the decays V --> hadrons (V = J/psi, Y), Relativistic and radiative corrections are also introduced to calculate alpha(s)(m(c)) and alpha(s)(m(b)) comparing them with other values available in the literature. The effects of dynamical gluon masses are negligible for Y decay but important for J/psi decay. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm for computing the propagator for three-dimensional quadratic gravity with a gravitational Chern-Simons term, based on an extension of the three-dimensional Barnes-Rivers operators, is proposed. A systematic study of the tree-level unitarity of this theory is developed and its agreement with Newton's law is investigated by computing the effective nonrelativistic potential. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to implement the mechanism of link rearrangement predicted in the strong coupling limit of Hamiltonian lattice QCD - in a constituent quark model in which constituent quarks, links and junctions are the dominant degrees of freedom. The implications of link rearrangement for the meson-meson interaction are investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The consequences of adding random perturbations (anarchy) to a baseline hierarchical model of quark masses and mixings are explored. Even small perturbations of the order of 5% of the smallest non-zero element can already give deviations significantly affecting parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, so any process generating the anarchy should in general be limited to this order of magnitude. The regularities of quark masses and mixings thus appear to be far from a generic feature of randomness in the mass matrices, and more likely indicate an underlying order. (C) 2001 Published by Elsevier B.V. B.V.