949 resultados para EXTRACELLULAR-MATRIX
Resumo:
Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.
Resumo:
Articular cartilage is the structure that coats the bone ends in regions where two bones are articulated, allowing movement. It has inefficient intrinsic and extrinsic mechanisms of repair, usually resulting in fibrocartilage formation after injury. Such repair have lower strength, stiffness and usability features when compared to hyaline cartilage. The mesenchymal stem cells have the potential to regenerate tissue without the production of scar, and because of this feature it is well studied. But to have its maximum chondrogenic potential, it is necessary to use scaffolds and growth factors. Biomaterials play the role of scaffold for the cells allowing them to become attached, grow and produce extracellular matrix, leading to formation of repair with hyaline cartilage. In this sense, the purpose of this study is to provide information on the various studies using cell therapy and / or biomaterials to produce hyaline cartilage
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n=10); Injured (I, n=10) and Injured and laser treated (Injured/LLLT, n=10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904nm, 50mW average power) were initiated 24h after injury, at energy density of 69Jcm(-1) for 48s, for 5days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-, TGF-, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P<0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF- and myogenin compared to the injured group (P<0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as 'moonlighting'proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitratelyase, malatesynthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Resumo:
Different parasites that commonly occur concomitantly can influence one another, sometimes with unpredictable effects. We evaluated pathological aspects of dogs naturally co-infected with Leishmania infantum and Ehrlichia canis. The health status of the dogs was investigated based on histopathological, hematological and biochemical analyses of 21 animals infected solely with L. infantum and 22 dogs co-infected with L. infantum and E. canis. The skin of both groups showed chronic, predominantly lymphohistioplasmacytic inflammatory reaction. The plasmacytosis in the lymphoid tissues was likely related with the hypergammaglobulinemia detected in all the dogs. The disorganization of extracellular matrix found in the reticular dermis of the inguinal region and ear, characterized by the substitution of thick collagen fibers for thin fibers, was attributed to the degree of inflammatory reaction, irrespective of the presence of parasites. In addition, the histopathological analysis revealed that twice as many dogs in the co-infected group presented Leishmania amastigotes in the ear skin than those infected solely with Leishmania, increasing the possibility of becoming infected through sand fly vectors. Our findings highlight the fact that the health of dogs infected concomitantly with L. infantum and E. canis is severely compromised due to their high levels of total plasma protein, globulins, alkaline phosphatase and creatine kinase, and severe anemia.