976 resultados para EBNA-2 gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuraminidase gene, nanH, is present in the O1, non-toxigenic Vibrio cholerae Amazonia strain. Its location has been assigned to a 150 kb NotI DNA fragment, with the use of pulsed-field gel electrophoresis and DNA hybridization. This NotI fragment is positioned inside 630 kb SfiI and 1900 kb I-CeuI fragments of chromosome 1. Association of the pathogenicity island VPI-2, carrying nanH and other genes, with toxigenic strains has been described by other authors. The presence of nanH in a non-toxigenic strain is an exception to this rule. The Amazonia strain nanH was sequenced (Genbank accession No. AY825932) and compared to available V. cholerae sequences. The sequence is different from those of pandemic strains, with 72 nucleotide substitutions. This is the first description of an O1 strain with a different nanH allele. The most variable domain of the Amazonia NanH is the second lectin wing, comprising 13 out of 17 amino acid substitutions. Based on the presence of nanH in the same region of the genome, and similarity of the adjacent sequences to VPI-2 sequences, it is proposed that the pathogenicity island VPI-2 is present in this strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bovine papillomavirus type 2 (BPV-2) involvement in the aetiology of chronic enzootic haematuria associated to bracken fern ingestion has been suggested for a long time. However, a few reports have shown the presence of the BPV-2 in urinary bladder tumors of cattle. The aim of this study was to investigate the presence of the BPV-2 infection in the urinary bladder of cattle with chronic enzootic haematuria in Brazilian cattle herds. Sixty-two urinary bladders were collected from adult cattle in beef herds from the north region of the state of Paraná, Brazil. According to clinical and pathological finds the specimens were distributed in three groups: the group A was constituted by 22 urinary bladders with macroscopic lesions collected at necropsy of cattle with clinical signs of chronic enzootic haematuria; the group B by 30 urinary bladders with macroscopic lesions collected in a slaughterhouse of cows coming from bracken fern-endemic geographical region; and the group C (control) by 10 urinary bladders without macroscopic lesions collected from asymptomatic cattle in a bracken fern-free geographical region. By a semi-nested polymerase chain reaction (PCR) assay, with an internal control, a fragment of the BPV-2 L1 gene with 386 bp length was amplified in 36 (58%) urinary bladder. The rate of BPV-2 positive urinary bladders was 50% (11/22) for group A, 80% (24/30) for group B, and 10% (1/10) for group C (control). The rate of the positive results found in groups A and B that included urinary bladder samples with macroscopic lesions was 67% (35/52) and the detection of the BPV-2 in both groups was significantly higher (P < 0.05) than in the control group. RFLP with Rsa I and Hae III enzymes evaluated the specificity of the BPV-2 amplicons. The PCR internal control that amplified a 626 bp fragment of the ND5 gene of the bovine mitochondrial genome was amplified in all analyzed samples and excluded false-negatives or invalid results in the semi-nested PCR. These results suggest the BPV-2 involvement in the chronic enzootic haematuria aetiology and open the perspective of the development of new strategies for the control of this disease that is the major cause of economical losses in beef herds from many Brazilian geographical regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remyelination can be studied in aggregating rat brain cell cultures after limited demyelination. Demyelination was induced using a monoclonal antibody against myelin/oligodendrocyte glycoprotein (MOG mAb), in the presence of complement. De- and remyelination were assessed by measuring myelin basic protein (MBP). Two days after removing the MOG mAb, MBP levels reached 50% of controls and after 7 days 93%. During this period, cell proliferation determined by [14C]thymidine incorporation was similar in remyelinating and control cultures. Hormones and growth factors were tested for possible stimulatory effect on remyelinating cultures. Bovine growth hormone (bGH), triiodothyronine (T3), basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) did not improve remyelination. Only epidermal growth factor (EGF) increased the level of remyelination. PDGF increased the rate of cell proliferation in both control and remyelinating cultures. A significant proportion of oligodendrocytes entered the cell division cycle and were not available for remyelination. The results obtained with PDGF and FGF (inhibition) support the idea that a pool of progenitor cells was still present and able to proliferate and differentiate into myelinating oligodendrocytes. The levels of myelin protein mRNAs were investigated during de- and remyelination. During demyelination, myelin protein mRNA levels decreased to approximately 50% of control cultures and returned to normal during remyelination. These preliminary results indicate that normal levels of gene transcription are sufficient to meet the increased need for newly synthesized myelin proteins during remyelination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms underlying lymphocyte extravasation remain poorly characterized. We have recently identified junctional adhesion molecule-2 (JAM-2), and have shown that antibodies to JAM-2 stain high endothelial venules (HEVs) within lymph nodes and Peyer patches of adult mice. Here we show that mouse lymphocytes migrate in greater numbers across monolayers of endothelioma cells transfected with JAM-2. The significance of these findings to an understanding of both normal and pathologic lymphocyte extravasation prompted us to clone the human homologue of JAM-2. We herein demonstrate that an anti-JAM-2 antibody, or a soluble JAM-2 molecule, blocks the transmigration of primary human peripheral blood leukocytes across human umbilical vein endothelial cells expressing endogenous JAM-2. Furthermore, we show that JAM-2 is expressed on HEVs in human tonsil and on a subset of human leukocytes, suggesting that JAM-2 plays a central role in the regulation of transendothelial migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein sequence deduced from the open reading frame of a human placental cDNA encoding a cAMP-responsive enhancer (CRE)-binding protein (CREB-327) has structural features characteristic of several other transcriptional transactivator proteins including jun, fos, C/EBP, myc, and CRE-BP1. Results of Southwestern analysis of nuclear extracts from several different cell lines show that there are multiple CRE-binding proteins, which vary in size in cell lines derived from different tissues and animal species. To examine the molecular diversity of CREB-327 and related proteins at the nucleic acid level, we used labeled cDNAs from human placenta that encode two different CRE-binding proteins (CREB-327 and CRE-BP1) to probe Northern and Southern blots. Both probes hybridized to multiple fragments on Southern blots of genomic DNA from various species. Alternatively, when a human placental c-jun probe was hybridized to the same blot, a single fragment was detected in most cases, consistent with the intronless nature of the human c-jun gene. The CREB-327 probe hybridized to multiple mRNAs, derived from human placenta, ranging in size from 2-9 kilobases. In contrast, the CRE-BP1 probe identified a single 4-kilobase mRNA. Sequence analyses of several overlapping human genomic cosmid clones containing CREB-327 sequences in conjunction with polymerase chain reaction indicates that the CREB-327/341 cDNAs are composed of at least eight or nine exons, and analyses of human placental cDNAs provide direct evidence for at least one alternatively spliced exon. Analyses of mouse/hamster-human hybridoma DNAs by Southern blotting and polymerase chain reaction localizes the CREB-327/341 gene to human chromosome 2. The results indicate that there is a dichotomy of CREB-like proteins, those that are related by overall structure and DNA-binding specificity as well as those that are related by close similarities of primary sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amplification of the epidermal growth factor receptor (EGFR) or expression of its constitutively activated mutant, DeltaEGFR(2-7), in association with the inactivation of the INK4a/Arf gene locus is a frequent alteration in human glioblastoma. The notion of a cooperative effect between these two alterations has been demonstrated in respective mouse brain tumor models including our own. Here, we investigated underlying molecular mechanisms in early passage cortical astrocytes deficient for p16(INK4a)/p19(Arf) or p53, respectively, with or without ectopic expression of DeltaEGFR(2-7). Targeting these cells with the specific EGFR inhibitor tyrphostin AG1478 revealed that phosphorylation of ERK was only abrogated in the presence of an intact INK4a/Arf gene locus. The sensitivity to inhibit ERK phosphorylation was independent of ectopic expression of DeltaEGFR(2-7) and independent of the TP53 status. This resistance to downregulate the MAPK pathway in the absence of INK4a/Arf was confirmed in cell lines derived from our mouse glioma models with the respective initial genetic alterations. Thus, deletion of INK4a/Arf appears to keep ERK in its active, phosphorylated state insensitive to an upstream inhibitor specifically targeting EGFR/DeltaEGFR(2-7). This resistance may contribute to the cooperative tumorigenic effect selected for in human glioblastoma that may be of crucial clinical relevance for treatments specifically targeting EGFR/DeltaEGFR(2-7) in glioblastoma patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to test whether oligonucleotide-targeted gene repair can correct the point mutation in genomic DNA of PDE6b(rd1) (rd1) mouse retinas in vivo. METHODS: Oligonucleotides (ODNs) of 25 nucleotide length and complementary to genomic sequence subsuming the rd1 point mutation in the gene encoding the beta-subunit of rod photoreceptor cGMP-phosphodiesterase (beta-PDE), were synthesized with a wild type nucleotide base at the rd1 point mutation position. Control ODNs contained the same nucleotide bases as the wild type ODNs but with varying degrees of sequence mismatch. We previously developed a repeatable and relatively non-invasive technique to enhance ODN delivery to photoreceptor nuclei using transpalpebral iontophoresis prior to intravitreal ODN injection. Three such treatments were performed on C3H/henJ (rd1) mouse pups before postnatal day (PN) 9. Treatment outcomes were evaluated at PN28 or PN33, when retinal degeneration was nearly complete in the untreated rd1 mice. The effect of treatment on photoreceptor survival was evaluated by counting the number of nuclei of photoreceptor cells and by assessing rhodopsin immunohistochemistry on flat-mount retinas and sections. Gene repair in the retina was quantified by allele-specific real time PCR and by detection of beta-PDE-immunoreactive photoreceptors. Confirmatory experiments were conducted using independent rd1 colonies in separate laboratories. These experiments had an additional negative control ODN that contained the rd1 mutant nucleotide base at the rd1 point mutation site such that the sole difference between treatment with wild type and control ODN was the single base at the rd1 point mutation site. RESULTS: Iontophoresis enhanced the penetration of intravitreally injected ODNs in all retinal layers. Using this delivery technique, significant survival of photoreceptors was observed in retinas from eyes treated with wild type ODNs but not control ODNs as demonstrated by cell counting and rhodopsin immunoreactivity at PN28. Beta-PDE immunoreactivity was present in retinas from eyes treated with wild type ODN but not from those treated with control ODNs. Gene correction demonstrated by allele-specific real time PCR and by counts of beta-PDE-immunoreactive cells was estimated at 0.2%. Independent confirmatory experiments showed that retinas from eyes treated with wild type ODN contained many more rhodopsin immunoreactive cells compared to retinas treated with control (rd1 sequence) ODN, even when harvested at PN33. CONCLUSIONS: Short ODNs can be delivered with repeatable efficiency to mouse photoreceptor cells in vivo using a combination of intravitreal injection and iontophoresis. Delivery of therapeutic ODNs to rd1 mouse eyes resulted in genomic DNA conversion from mutant to wild type sequence, low but observable beta-PDE immunoreactivity, and preservation of rhodopsin immunopositive cells in the outer nuclear layer, suggesting that ODN-directed gene repair occurred and preserved rod photoreceptor cells. Effects were not seen in eyes treated with buffer or with ODNs having the rd1 mutant sequence, a definitive control for this therapeutic approach. Importantly, critical experiments were confirmed in two laboratories by several different researchers using independent mouse colonies and ODN preparations from separate sources. These findings suggest that targeted gene repair can be achieved in the retina following enhanced ODN delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gene, named AtECH2, has been identified in Arabidopsis thaliana to encode a monofunctional peroxisomal enoyl-CoA hydratase 2. Homologues of AtECH2 are present in several angiosperms belonging to the Monocotyledon and Dicotyledon classes, as well as in a gymnosperm. In vitro enzyme assays demonstrated that AtECH2 catalyzed the reversible conversion of 2E-enoyl-CoA to 3R-hydroxyacyl-CoA. AtECH2 was also demonstrated to have enoyl-CoA hydratase 2 activity in an in vivo assay relying on the synthesis of polyhydroxyalkanoate from the polymerization of 3R-hydroxyacyl-CoA in the peroxisomes of Saccharomyces cerevisiae. AtECH2 contained a peroxisome targeting signal at the C-terminal end, was addressed to the peroxisome in S. cerevisiae, and a fusion protein between AtECH2 and a fluorescent protein was targeted to peroxisomes in onion cells. AtECH2 gene expression was strongest in tissues with high beta-oxidation activity, such as germinating seedlings and senescing leaves. The contribution of AtECH2 to the degradation of unsaturated fatty acids was assessed by analyzing the carbon flux through the beta-oxidation cycle in plants that synthesize peroxisomal polyhydroxyalkanoate and that were over- or underexpressing the AtECH2 gene. These studies revealed that AtECH2 participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2E-enoyl-CoA for further degradation through the core beta-oxidation cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary.  The outcome of hepatitis C virus (HCV) infection and the likelihood of a sustained virological response (SVR) to antiviral therapy depends on both viral and host characteristics. In vitro studies demonstrated that bile acids (BA) interfere with antiviral interferon effects. We investigate the influence of plasma BA concentrations and an ABCB11 polymorphism associated with lower transporter expression on viral load and SVR. Four hundred and fifty-one Caucasian HCV-patients treated with PEG-interferon and ribavirin were included in the study. ABCB11 1331T>C was genotyped, and plasma BA levels were determined. The 1331C allele was slightly overrepresented in HCV-patients compared to controls. In HCV-patients, a significant difference between patients achieving SVR vs non-SVR was observed for HCV-2/3 (5 vs 9 μm; P = 0.0001), while median BA levels in HCV-1 were marginally elevated. Normal BA levels <8 μm were significantly associated with SVR (58.3%vs 36.3%; OR 2.48; P = 0.0001). This difference was significant for HCV-2/3 (90.7%vs 67.6%; P = 0.002) but marginal in HCV-1 (38.7%vs 27.8%; P = 0.058). SVR rates were equivalent between ABCB11 genotypes for HCV-1, but increased for HCV-2/3 (TT 100%vs CC 78%; OR 2.01; P = 0.043). IL28B genotype had no influence on these associations. No correlation between BA levels and HCV RNA was detected for any HCV genotype. The higher allelic frequency of ABCB11 1331C in HCV-patients compared to controls may indirectly link increased BA to HCV chronicity. Our data support a role for BA as host factor affecting therapy response in HCV-2/3 patients, whereas a weaker association was found for HCV-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonstructural protein 4 (NSP4), encoded by group A rotavirus genome segment 10, is a multifunctional protein and the first recognized virus-encoded enterotoxin. The NSP4 gene has been sequenced, and five distinct genetic groups have been described: genotypes A-E. NSP4 genotypes A, B, and C have been detected in humans. In this study, the NSP4-encoding gene of human rotavirus strains of different G and P genotypes collected from children between 1987 and 2003 in three cities of West Central region of Brazil was characterized. NSP4 gene of 153 rotavirus-positive fecal samples was amplified by reverse transcriptase-polymerase chain reaction and then sequenced. For phylogenetic analysis, NSP4 nucleotide sequences of these samples were compared to nucleotide sequences of reference strains available in GenBank. Two distinct NSP4 genotypes could be identified: 141 (92.2%) sequences clustered with NSP4 genotype B, and 12 sequences (7.8%) clustered with NSP4 genotype A. These results reinforce that further investigations are needed to assess the validity of NSP4 as a suitable target for epidemiologic surveillance of rotavirus infections and vaccine development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 3-hydroxykynurenine transaminase (3-HKT) gene plays a vital role in the development of malaria parasites by participating in the synthesis of xanthurenic acid, which is involved in the exflagellation of microgametocytes in the midgut of malaria vector species. The 3-HKT enzyme is involved in the tryptophan metabolism of Anophelines. The gene had been studied in the important global malaria vector, Anopheles gambiae. In this report, we have conducted a preliminary investigation to characterize this gene in the two important vector species of malaria in India, Anopheles culicifacies and Anopheles stephensi. The analysis of the genetic structure of this gene in these species revealed high homology with the An. gambiae gene. However, four non-synonymous mutations in An. stephensi and seven in An. culicifacies sequences were noted in the exons 1 and 2 of the gene; the implication of these mutations on enzyme structure remains to be explored.