978 resultados para Dodge, Marshall
Resumo:
This paper presents a new algorithm for learning the structure of a special type of Bayesian network. The conditional phase-type (C-Ph) distribution is a Bayesian network that models the probabilistic causal relationships between a skewed continuous variable, modelled by the Coxian phase-type distribution, a special type of Markov model, and a set of interacting discrete variables. The algorithm takes a dataset as input and produces the structure, parameters and graphical representations of the fit of the C-Ph distribution as output.The algorithm, which uses a greedy-search technique and has been implemented in MATLAB, is evaluated using a simulated data set consisting of 20,000 cases. The results show that the original C-Ph distribution is recaptured and the fit of the network to the data is discussed.
Resumo:
The effective provision of care for the elderly is becoming increasingly more difficult. This is due to the rising proportion of elderly in the population, increasing demands placed on the health services and the financial strain placed on an already stretched economy. The research presented in this paper uses three different models to represent the length of stay distribution of geriatric patients admitted to one of the six key acute hospitals in Northern Ireland and various patient characteristics associated with their respective length of stay. The accurate modelling of bed usage within wards would enable hospital managers to prepare patient discharge packages and rehabilitation services in advance. The models presented within the paper include a Cox proportional hazards model, a Bayesian network with a discrete variable to represent length of stay and a special conditional phase-type model (C-Ph) with a connecting outcome node. This research demonstrates the new efficient fitting algorithm employed for Coxian phase-type distributions while updating C-Ph models for recent elderly patient data.
Resumo:
Discrete Conditional Phase-type (DC-Ph) models are a family of models which represent skewed survival data conditioned on specific inter-related discrete variables. The survival data is modeled using a Coxian phase-type distribution which is associated with the inter-related variables using a range of possible data mining approaches such as Bayesian networks (BNs), the Naïve Bayes Classification method and classification regression trees. This paper utilizes the Discrete Conditional Phase-type model (DC-Ph) to explore the modeling of patient waiting times in an Accident and Emergency Department of a UK hospital. The resulting DC-Ph model takes on the form of the Coxian phase-type distribution conditioned on the outcome of a logistic regression model.
Resumo:
We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100 m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn alpha lines presented herein shows that RRLs of higher principal quantum number (n > 90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high-sensitivity, high-resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial toward advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM).
Resumo:
The paper introduces a new modeling approach that represents the waiting times in an accident and emergency (A&E) department in a UK based national health service (NHS) hospital. The technique uses Bayesian networks to capture the heterogeneity of arriving patients by representing how patient covariates interact to influence their waiting times in the department. Such waiting times have been reviewed by the NHS as a means of investigating the efficiency of A&E departments (emergency rooms) and how they operate. As a result activity targets are now established based on the patient total waiting times with much emphasis on trolley waits.
Resumo:
There has always been a question mark over how best to integrate developing countries into the world trading system and traditionally the WTO has used special and differential treatment (S&D) to do so. However, since 1996 the WTO has been involved with the Aid for Trade (AfT) initiative typically co-ordinated by the OECD and UN. This article firstly outlines the background to AfT since 1996 under the numerous agencies working in the area, highlighting how importance has always been placed on the monitoring and effectiveness of the process. It then turns to assessing the various methods currently used and the proposal of the WTO’s Trade Policy Review Mechanism (TPRM) as a potential monitoring tool of AfT.
Resumo:
Coxian phase-type distributions are becoming a popular means of representing survival times within a health care environment. They are favoured as they show a distribution as a system of phases and can allow for an easy visual representation of the rate of flow of patients through a system. Difficulties arise, however, in determining the parameter estimates of the Coxian phase-type distribution. This paper examines ways of making the fitting of the Coxian phase-type distribution less cumbersome by outlining different software packages and algorithms available to perform the fit and assessing their capabilities through a number of performance measures. The performance measures rate each of the methods and help in identifying the more efficient. Conclusions drawn from these performance measures suggest SAS to be the most robust package. It has a high rate of convergence in each of the four example model fits considered, short computational times, detailed output, convergence criteria options, along with a succinct ability to switch between different algorithms.
Resumo:
Conditional Gaussian (CG) distributions allow the inclusion of both discrete and continuous variables in a model assuming that the continuous variable is normally distributed. However, the CG distributions have proved to be unsuitable for survival data which tends to be highly skewed. A new method of analysis is required to take into account continuous variables which are not normally distributed. The aim of this paper is to introduce the more appropriate conditional phase-type (C-Ph) distribution for representing a continuous non-normal variable while also incorporating the causal information in the form of a Bayesian network.