977 resultados para Document numérique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being able to ask questions about the provenance of some data requires documentation on each influence on that data's existence and content. Much software exists, and is being developed, for which there is no provenance-awareness, i.e. at best, the data it outputs can be connected to its inputs, but with no record of intermediate processing. Further, where some record of processing does exist, e.g. as logs, it is not in a form easily connected with that of other processes. We would like to enable compiled software to record useful documentation without requiring prior manual adaptation. In this paper, we present an approach to adapting source code from its original form without manual manipulation, to record information on data provenance during execution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Documento componente do jogo “Musikinésia (http://www.loa.sead.ufscar.br/musikinesia.php)” desenvolvido pela equipe do Laboratório de Objetos de Aprendizagem da Universidade Federal de São Carlos (LOA/UFSCar).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Documento componente do jogo “Digestower (http://www.loa.sead.ufscar.br/digestower.php)” desenvolvido pela equipe do Laboratório de Objetos de Aprendizagem da Universidade Federal de São Carlos (LOA/UFSCar).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels must be built using all the terms in the documents of the collection. This paper presents the SeCLAR method, which explores the use of association rules in the selection of good candidates for labels of hierarchical document clusters. The purpose of this method is to select a subset of terms by exploring the relationship among the terms of each document. Thus, these candidates can be processed by a classical method to generate the labels. An experimental study demonstrates the potential of the proposed approach to improve the precision and recall of labels obtained by classical methods only considering the terms which are potentially more discriminative. © 2012 - IOS Press and the authors. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: