926 resultados para Diurnal monkey


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates the use of stable isotope ratios of carbon and nitrogen in animal tissue for indicating aspects of species behavioral strategy. We analyzed hair from individuals representing four species of New World monkeys (Alouatta palliata, the mantled howler; Ateles geoffroyi, the spider monkey; Cebus capucinus, the capuchin; and Brachyteles arachnoides, the woolly-spider monkey or muriqui) for delta 13C and delta 15N using previously developed methods. There are no significant differences in either carbon or nitrogen ratios between sexes, sampling year, or year of analysis. Seasonal differences in delta 13C reached a low level of significance but do not affect general patterns. Variation within species was similar to that recorded previously within single individuals. The omega 13C data show a bimodal distribution with significant difference between the means. The two monkey populations living in an evergreen forest were similar to each other and different from the other two monkey populations that inhabited dry, deciduous forests. This bimodal distribution is independent of any particular species' diet and reflects the level of leaf cover in the two types of forest. The delta 15N data display three significantly different modes. The omnivorous capuchins were most positive reflecting a trophic level offset. The spider monkeys and the muriquis were similar to one another and significantly more positive than the howlers. This distribution among totally herbivorous species correlates with the ingestion of legumes by the howler monkey population. In combination, these data indicate that museum-curated primate material can be analyzed to yield information on forest cover and diet in populations and species lacking behavioral data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2013 The Association for the Study of Animal Behaviour.Social complexity, often estimated by group size, is seen as driving the complexity of vocal signals, but its relation to olfactory signals, which arguably arose to function in nonsocial realms, remains underappreciated. That olfactory signals also may mediate within-group interaction, vary with social complexity and promote social cohesion underscores a potentially crucial link with sociality. To examine that link, we integrated chemical and behavioural analyses to ask whether olfactory signals facilitate reproductive coordination in a strepsirrhine primate, the Coquerel's sifaka, Propithecus coquereli. Belonging to a clade comprising primarily solitary, nocturnal species, the diurnal, group-living sifaka represents an interesting test case. Convergent with diurnal, group-living lemurids, sifakas expressed chemically rich scent signals, consistent with the social complexity hypothesis for communication. These signals minimally encoded the sex of the signaller and varied with female reproductive state. Likewise, sex and female fertility were reflected in within-group scent investigation, scent marking and overmarking. We further asked whether, within breeding pairs, the stability or quality of the pair's bond influences the composition of glandular signals and patterns of investigatory or scent-marking behaviour. Indeed, reproductively successful pairs tended to show greater similarity in their scent signals than did reproductively unsuccessful pairs, potentially through chemical convergence. Moreover, scent marking was temporally coordinated within breeding pairs and was influenced by past reproductive success. That olfactory signalling reflects social bondedness or reproductive history lends support to recent suggestions that the quality of relationships may be a more valuable proxy than group size for estimating social complexity. We suggest that olfactory signalling in sifakas is more complex than previously recognized and, as in other socially integrated species, can be a crucial mechanism for promoting group cohesion and maintaining social bonds. Thus, the evolution of sociality may well be reflected in the complexity of olfactory signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light is a critical environmental signal that regulates every phase of the plant life cycle, from germination to floral initiation. Of the many light receptors in the model plant Arabidopsis thaliana, the red- and far-red light-sensing phytochromes (phys) are arguably the best studied, but the earliest events in the phy signaling pathway remain poorly understood. One of the earliest phy signaling events is the translocation of photoactivated phys from the cytoplasm to the nucleus, where they localize to subnuclear foci termed photobodies; in continuous light, photobody localization correlates closely with the light-dependent inhibition of embryonic stem growth. Despite a growing body of evidence supporting the biological significance of photobodies in light signaling, photobodies have also been shown to be dispensable for seedling growth inhibition in continuous light, so their physiological importance remains controversial; additionally, the molecular components that are required for phy localization to photobodies are largely unknown. The overall goal of my dissertation research was to gain insight into the early steps of phy signaling by further defining the role of photobodies in this process and identifying additional intragenic and extragenic requirements for phy localization to photobodies.

Even though the domain structure of phys has been extensively studied, not all of the intramolecular requirements for phy localization to photobodies are known. Previous studies have shown that the entire C-terminus of phys is both necessary and sufficient for their localization to photobodies. However, the importance of the individual subdomains of the C-terminus is still unclear. For example a truncation lacking part of the most C-terminal domain, the histidine kinase-related domain (HKRD), can still localize to small photobodies in the light and behaves like a weak allele. However, a point mutation within the HKRD renders the entire molecule completely inactive. To resolve this discrepancy, I explored the hypothesis that this point mutation might impair the dimerization of the HKRD; dimerization has been shown to occur via the C-terminus of phy and is required for more efficient signaling. I show that this point mutation impairs nuclear localization of phy as well as its subnuclear localization to photobodies. Additionally, yeast-two-hybrid analysis shows that the wild-type HKRD can homodimerize but that the HKRD containing the point mutation fails to dimerize with both itself and with wild-type HKRD. These results demonstrate that dimerization of the HKRD is required for both nuclear and photobody localization of phy.

Studies of seedlings grown in diurnal conditions show that photoactivated phy can persist into darkness to repress seedling growth; a seedling's growth rate is therefore fastest at the end of the night. To test the idea that photobodies could be involved in regulating seedling growth in the dark, I compared the growth of two transgenic Arabidopsis lines, one in which phy can localize to photobodies (PBG), and one in which it cannot (NGB). Despite these differences in photobody morphology, both lines are capable of transducing light signals and inhibiting seedling growth in continuous light. After the transition from red light to darkness, the PBG line was able to repress seedling growth, as well as the accumulation of the growth-promoting, light-labile transcription factor PHYTOCHROME INTERACTING FACTOR 3 (PIF3), for eighteen hours, and this correlated perfectly with the presence of photobodies. Reducing the amount of active phy by either reducing the light intensity or adding a phy-inactivating far-red pulse prior to darkness led to faster accumulation of PIF3 and earlier seedling growth. In contrast, the NGB line accumulated PIF3 even in the light, and seedling growth was only repressed for six hours; this behavior was similar in NGB regardless of the light treatment. These results suggest that photobodies are required for the degradation of PIF3 and for the prolonged stabilization of active phy in darkness. They also support the hypothesis that photobody localization of phys could serve as an instructive cue during the light-to-dark transition, thereby fine-tuning light-dependent responses in darkness.

In addition to determining an intragenic requirement for photobody localization and further exploring the significance of photobodies in phy signaling, I wanted to identify extragenic regulators of photobody localization. A recent study identified one such factor, HEMERA (HMR); hmr mutants do not form large photobodies, and they are tall and albino in the light. To identify other components in the HMR-mediated branch of the phy signaling pathway, I performed a forward genetic screen for suppressors of a weak hmr allele. Surprisingly, the first three mutants isolated from the screen were alleles of the same novel gene, SON OF HEMERA (SOH). The soh mutations rescue all of the phenotypes associated with the weak hmr allele, and they do so in an allele-specific manner, suggesting a direct interaction between SOH and HMR. Null soh alleles, which were isolated in an independent, tall, albino screen, are defective in photobody localization, demonstrating that SOH is an extragenic regulator of phy localization to photobodies that works in the same genetic pathway as HMR.

In this work, I show that dimerization of the HKRD is required for both the nuclear and photobody localization of phy. I also demonstrate a tight correlation between photobody localization and PIF3 degradation, further establishing the significance of photobodies in phy signaling. Finally, I identify a novel gene, SON OF HEMERA, whose product is necessary for phy localization to photobodies in the light, thereby isolating a new extragenic determinant of photobody localization. These results are among the first to focus exclusively on one of the earliest cellular responses to light - photobody localization of phys - and they promise to open up new avenues into the study of a poorly understood facet of the phy signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of antibodies in chronic injury to organ transplants has been suggested for many years, but recently emphasized by new data. We have observed that when immunosuppressive potency decreases either by intentional weaning of maintenance agents or due to homeostatic repopulation after immune cell depletion, the threshold of B cell activation may be lowered. In human transplant recipients the result may be donor-specific antibody, C4d+ injury, and chronic rejection. This scenario has precise parallels in a rhesus monkey renal allograft model in which T cells are depleted with CD3 immunotoxin, or in a CD52-T cell transgenic mouse model using alemtuzumab to deplete T cells. Such animal models may be useful for the testing of therapeutic strategies to prevent DSA. We agree with others who suggest that weaning of immunosuppression may place transplant recipients at risk of chronic antibody-mediated rejection, and that strategies to prevent this scenario are needed if we are to improve long-term graft and patient outcomes in transplantation. We believe that animal models will play a crucial role in defining the pathophysiology of antibody-mediated rejection and in developing effective therapies to prevent graft injury. Two such animal models are described herein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated whether rhesus monkeys show evidence of metacognition in a reduced, visual oculomotor task that is particularly suitable for use in fMRI and electrophysiology. The 2-stage task involved punctate visual stimulation and saccadic eye movement responses. In each trial, monkeys made a decision and then made a bet. To earn maximum reward, they had to monitor their decision and use that information to bet advantageously. Two monkeys learned to base their bets on their decisions within a few weeks. We implemented an operational definition of metacognitive behavior that relied on trial-by-trial analyses and signal detection theory. Both monkeys exhibited metacognition according to these quantitative criteria. Neither external visual cues nor potential reaction time cues explained the betting behavior; the animals seemed to rely exclusively on internal traces of their decisions. We documented the learning process of one monkey. During a 10-session transition phase, betting switched from random to a decision-based strategy. The results reinforce previous findings of metacognitive ability in monkeys and may facilitate the neurophysiological investigation of metacognitive functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015. American Geophysical Union. All Rights Reserved.The role of surface and advective heat fluxes on buoyancy-driven circulation was examined within a tropical coral reef system. Measurements of local meteorological conditions as well as water temperature and velocity were made at six lagoon locations for 2 months during the austral summer. We found that temperature rather than salinity dominated buoyancy in this system. The data were used to calculate diurnally phase-averaged thermal balances. A one-dimensional momentum balance developed for a portion of the lagoon indicates that the diurnal heating pattern and consistent spatial gradients in surface heat fluxes create a baroclinic pressure gradient that is dynamically important in driving the observed circulation. The baroclinic and barotropic pressure gradients make up 90% of the momentum budget in part of the system; thus, when the baroclinic pressure gradient decreases 20% during the day due to changes in temperature gradient, this substantially changes the circulation, with different flow patterns occurring during night and day. Thermal balances computed across the entire lagoon show that the spatial heating patterns and resulting buoyancy-driven circulation are important in maintaining a persistent advective export of heat from the lagoon and for enhancing ocean-lagoon exchange.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of five-year records of temperatures and currents collected at Moorea reveal strong internal wave activity at predominantly semi-diurnal frequencies impacting reef slopes at depths 30m around the entire island. Temperature changes of 1.5C to 3C are accompanied by surges of upward and onshore flow and vertical shear in onshore currents. Superimposed on annual temperature changes of approximately 3C, internal wave activity is high from Oct-May and markedly lower from Jun-Sep. The offshore pycnocline is broadly distributed with continuous stratification to at least 500m depth, and a subsurface fluorescence maximum above the strong nutricline at approximately 200m. Minimum buoyancy periods range from 4.8 to 6min, with the maximum density gradient occurring at 50 to 60m depth in summer and deepening to approximately 150 to 200m in winter. The bottom slope angle around all of Moorea is super-critical relative to the vertical stratification angle suggesting that energy propagating into shallow water is only a portion of total incident internal wave energy. Vertical gradient Richardson numbers indicate dominance by density stability relative to current shear with relatively limited diapycnal mixing. Coherence and lagged cross-correlation of semi-diurnal temperature variation indicate complex patterns of inter-site arrival of internal waves and no clear coherence or lagged correlation relationships among island sides. Semi-diurnal and high frequency internal wave packets likely arrive on Moorea from a combination of local and distant sources and may have important impacts for nutrient and particle fluxes in deep reef environments. © 2012 American Geophysical Union. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The macaque frontal eye field (FEF) is involved in the generation of saccadic eye movements and fixations. To better understand the role of the FEF, we reversibly inactivated a portion of it while a monkey made saccades and fixations in response to visual stimuli. Lidocaine was infused into a FEF and neural inactivation was monitored with a nearby microelectrode. We used two saccadic tasks. In the delay task, a target was presented and then extinguished, but the monkey was not allowed to make a saccade to its location until a cue to move was given. In the step task, the monkey was allowed to look at a target as soon as it appeared. During FEF inactivation, monkeys were severely impaired at making saccades to locations of extinguished contralateral targets in the delay task. They were similarly impaired at making saccades to locations of contralateral targets in the step task if the target was flashed for < or =100 ms, such that it was gone before the saccade was initiated. Deficits included increases in saccadic latency, increases in saccadic error, and increases in the frequency of trials in which a saccade was not made. We varied the initial fixation location and found that the impairment specifically affected contraversive saccades rather than affecting all saccades made into head-centered contralateral space. Monkeys were impaired only slightly at making saccades to contralateral targets in the step task if the target duration was 1000 ms, such that the target was present during the saccade: latency increased, but increases in saccadic error were mild and increases in the frequency of trials in which a saccade was not made were insignificant. During FEF inactivation there usually was a direct correlation between the latency and the error of saccades made in response to contralateral targets. In the delay task, FEF inactivation increased the frequency of making premature saccades to ipsilateral targets. FEF inactivation had inconsistent and mild effects on saccadic peak velocity. FEF inactivation caused impairments in the ability to fixate lights steadily in contralateral space. FEF inactivation always caused an ipsiversive deviation of the eyes in darkness. In summary, our results suggest that the FEF plays major roles in (1) generating contraversive saccades to locations of extinguished or flashed targets, (2) maintaining contralateral fixations, and (3) suppressing inappropriate ipsiversive saccades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the immediate phase-shifting effects of high-intensity exercise of a practical duration (1 h) on human circadian phase, five groups of healthy men 20-30 yr of age participated in studies involving no exercise or exposure to morning, afternoon, evening, or nocturnal exercise. Except during scheduled sleep/dark and exercise periods, subjects remained under modified constant routine conditions allowing a sleep period and including constant posture, knowledge of clock time, and exposure to dim light intensities averaging (±SD) 42 ± 19 lx. The nocturnal onset of plasma melatonin secretion was used as a marker of circadian phase. A phase response curve was used to summarize the phase-shifting effects of exercise as a function of the timing of exercise. A significant effect of time of day on circadian phase shifts was observed (P < 0.004). Over the interval from the melatonin onset before exercise to the first onset after exercise, circadian phase was significantly advanced in the evening exercise group by 30 ± 15 min (SE) compared with the phase delays observed in the no-exercise group (-25 ± 14 min, P < 0.05). Phase shifts in response to evening exercise exposure were attenuated on the second day after exercise exposure and no longer significantly different from phase shifts observed in the absence of exercise. Unanticipated transient elevations of melatonin levels were observed in response to nocturnal exercise and in some evening exercise subjects. Taken together with the results from previous studies in humans and diurnal rodents, the current results suggest that 1) a longer duration of exercise exposure and/or repeated daily exposure to exercise may be necessary for reliable phase-shifting of the human circadian system and that 2) early evening exercise of high intensity may induce phase advances relevant for nonphotic entrainment of the human circadian system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground based remote sensing techniques are used to measure volcanic SO2 fluxes in efforts to characterise volcanic activity. As these measurements are made several km from source there is the potential for in-plume chemical transformation of SO2 to sulphate aerosol (conversion rates are dependent on meteorological conditions), complicating interpretation of observed SO2 flux trends. In contrast to anthropogenic plumes, SO2 lifetimes are poorly constrained for tropospheric volcanic plumes, where the few previous loss rate estimates vary widely (from ≪1 to >99% per hour .We report experiments conducted on the boundary layer plume of Masaya volcano, Nicaragua during the dry season. We found that SO2 fluxes showed negligible variation with plume age or diurnal variations in temperature, relative humidity and insolation, providing confirmation that remote SO2 flux measurements (typically of ≈500-2000 s old plumes) are reliable proxies for source emissions for ash free tropospheric plumes not emitted into cloud or fog. Copyright 2004 by the American Geophysical Union.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical distribution, seasonal and ontogenetic migrations and seasonal variability in abundance of Thysanoessa longicaudata (Krøyer) were investigated using the Longhurst-Hardy Plankton Recorder for a 4 yr period (March, 1971 to May, 1975) at Ocean Weather Station “I” (59°00′N; 19°00′W) in the north-eastern Atlantic Ocean. Of 8 species of euphausiids identified at this position, the vast majority were T. longicaudata (for example, 99.5% of the total euphausiids in 1972 belonged to this species). From March to October the majority of calyptopes, furciliae and adults of T. longicaudata were found in the upper 100 m. The major spawning occurred in spring at a water temperature of 9° to 10°C and calyptopes and furciliae appeared in late April, reaching their maximum abundance in May. There was no evidence of large-scale diurnal migrations, although an extensive ontogenetic migration of young developmental stages was observed. The eggs were found from 100 m down to 800 m, the maximum depth of sampling, and the vertical distribution of the three naupliar stages showed a “developmental ascent” as they matured. During the main reproductive period in May, over 70% of all nauplii were below 500 m while more than 94% of Calyptopis Stage I were above 500 m with their maximum abundance in the euphotic zone (0 to 50 m). Calyptopis Stage I is the first feeding stage and it is this stage which shows the largest ontogenetic migration. Brief descriptions of the egg and nauplii are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calanus helgolandicus over-winters in the shallow waters (100 m) of the Celtic Sea as copepodite stages V and VI; the minimum temperature in winter is approximately 8.0°C. This over-wintering is not a true hibernation or dormacy, accompanied by a reduced metabolic state with a discontinuation of feeding and development, but more of a lowered activity, involving reduced feeding and development, with predation on available microzooplankton and detritus. Analysis of specimens from the winter population showed that copepodite stages V and VI were actively feeding and still producing and possibly liberating eggs. The absence of late nauplii and young copepodites in the water column until late March indicated that there must be a high mortality of these winter cohorts. The copepodites of the first generation appeared in April–May, the younger stages, copepodites I to III, being distributed deeper in the water column below the euphotic zone and thermocline. This distribution would contribute to amuch slower rate of development. By August the ontogenetic vertical distributions observed in the copepodites were reversed, the younger stages occuring in the warmer surface layers within the euphotic zone. Diurnal migrations were observed in the later copepodites only, the younger stages I to III either remaining deep in spring or shallow in summer. The causal mechanisms which alter the behaviour of the young copepodites remain unexplained. The development of the population of Calanus helgolandicus in 1978, reaching its peak of abundance in August, was typical for the shelf seas around U.K. as observed from Continuous Plankton Recorder data, 1958 to 1977.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The marine cyanobacterium Prochlorococcus, the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light-synchronized axenic Prochlorococcus (PCC9511 strain) culture and S-35-methionine and H-3-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite > 10(4) times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G(2) cell cycle stage were consistently 2.2 times higher than those of cells at the G(1) stage. Furthermore, S+G(2) cells upregulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday to 42% at dusk of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations.