990 resultados para Dissemination strategies
Resumo:
Salivary cortisol is an index of plasma free cortisol and is obtained by a noninvasive procedure. We have been using salivary cortisol as a tool for physiological and diagnostic studies, among them the emergence of circadian rhythm in preterm and term infants. The salivary cortisol circadian rhythm in term and premature infants was established between 8 and 12 postnatal weeks. In the preterm infants the emergence of circadian rhythm was parallel to the onset of sleep rhythm. We also studied the use of salivary cortisol for screening for Cushing's syndrome (CS) in control and obese outpatients based on circadian rhythm and the overnight 1 mg dexamethasone (DEX) suppression test. Salivary cortisol was suppressed to less than 100 ng/dl after 1 mg DEX in control and obese patients. A single salivary cortisol measurement at 23:00 h and again after 1 mg DEX above the 90th percentile of the obese group values had sensitivity and specificity of 93 and 93% (23:00 h), and 91 and 94% (after DEX), respectively. The sensitivity improved to 100% when we combined both parameters. We also studied 11 CS children and 21 age-matched primary obese children for whom salivary cortisol sensitivity and specificity were 100/95% (23:00 h), and 100/95% (1 mg DEX), respectively. Similar to adults, sensitivity and specificity of 100% were obtained by combining 23:00 h and 1 mg DEX. The measurement of salivary cortisol is a useful tool for physiological studies and for the diagnosis of CS in children and adults on an outpatient basis.
Resumo:
Adrenocortical carcinoma is a highly malignant neoplasm with an incidence of two per million people per year. Several treatment strategies have resulted in temporary or partial tumor regression but very few cases have attained long survival. Surgical resection of the primary tumor and metastases is most effective. Several chemotherapeutic protocols have been employed with variable success. Mitotane (o,p'-DDD) is an adrenalytic drug effective in inducing a tumor response in 33% of patients treated. Mitotane requires metabolic transformation for therapeutic action. Tumors may vary in their ability to metabolize mitotane and the ability of tumors to transform mitotane may predict the clinical response to the drug. Preliminary data show a possible correlation between metabolic activity of neoplastic adrenocortical tissue and response to mitotane. We have attempted to develop mitotane analogs with enhanced adrenalytic effect. Compared to mitotane, a di-chloro compound, the bromo-chloro and di-bromo analogs appear to have a greater effect. Future approaches to the treatment of adrenocortical carcinoma are likely to be based on blocking or reversing the biological mechanisms of tumorigenesis. Angiogenic and chemotactic mechanisms may play a role in adrenal tumor growth and inhibition of these mechanisms may result in inhibition of tumor growth. New mitotane analogs with greater adrenalytic potential could be a promising approach to developing more effective and selective therapies for adrenal cancer. Alternative approaches should attempt to suppress tumor growth by means of compounds with anti-angiogenic and anti-chemotactic activity.
Resumo:
The exposure of fish to air is normally expected to interfere with the nitrogen excretion process. Hoplias malabaricus and Hoplerythrinus unitaeniatus, two teleost species, display distinct behaviors in response to decreases in natural reservoir water levels, although they may employ similar biochemical strategies. To investigate this point, plasma levels of ammonia, urea, uric acid, and the two urea cycle enzymes, ornithine carbamoyl transferase (OCT) and arginase (ARG), as well as glutamine synthetase (GS) were determined for both species after exposure to air. Plasma ammonia increased gradually during exposure to air, but only H. malabaricus showed increased concentrations of urea. Plasma uric acid remained very low in both fish. Enzymatic activities (mean ± SD, µmol min-1 g protein-1) of H. malabaricus showed significant increases (P<0.05, N = 6) in OCT from 0.84 ± 0.05 to 1.42 ± 0.03, in ARG from 8.07 ± 0.47 to 9.97 ± 0.53 and in GS from 1.15 ± 0.03 to 2.39 ± 0.04. The OCT and ARG enzymes remained constant in H. unitaeniatus (N = 6), but GS increased from 1.49 ± 0.02 to 2.06 ± 0.03. Although these species are very closely related and share the same environment, their biochemical strategies in response to exposure to air or to increased plasma ammonia are different.
Resumo:
To inhibit an ongoing flow of thoughts or actions has been largely considered to be a crucial executive function, and the stop-signal paradigm makes inhibitory control measurable. Stop-signal tasks usually combine two concurrent tasks, i.e., manual responses to a primary task (go-task) are occasionally countermanded by a stimulus which signals participants to inhibit their response in that trial (stop-task). Participants are always instructed not to wait for the stop-signal, since waiting strategies cause the response times to be unstable, invalidating the data. The aim of the present study was to experimentally control the strategies of waiting deliberately for the stop-signal in a stop-task by means of an algorithm that measured the variation in the reaction times to go-stimuli on-line, and displayed a warning legend urging participants to be faster when their reaction times were more than two standard deviations of the mean. Thirty-four university students performed a stop-task with go- and stop-stimuli, both of which were delivered in the visual modality and were lateralized within the visual field. The participants were divided into two groups (group A, without the algorithm, vs group B, with the algorithm). Group B exhibited lower variability of reaction times to go-stimuli, whereas no significant between-group differences were found in any of the measures of inhibitory control, showing that the algorithm succeeded in controlling the deliberate waiting strategies. Differences between deliberate and unintentional waiting strategies, and anxiety as a probable factor responsible for individual differences in deliberate waiting behavior, are discussed.
Resumo:
Nosocomial dissemination of glycopeptide-resistant enterococci represents a major problem in hospitals worldwide. In Brazil, the dissemination among hospitals in the city of São Paulo of polyclonal DNA profiles was previously described for vancomycin-resistant Enterococcus faecium. We describe here the dissemination of VanA phenotype E. faecalis between two hospitals located in different cities in the State of São Paulo. The index outbreak occurred in a tertiary care university hospital (HCUSP) in the city of São Paulo and three years later a cluster caused by the same strain was recognized in two patients hospitalized in a private tertiary care hospital (CMC) located 100 km away in the interior of the state. From May to July 1999, 10 strains of vancomycin-resistant E. faecalis were isolated from 10 patients hospitalized in the HCUSP. The DNA genotyping using pulsed-field gel electrophoresis (PFGE) showed that all isolates were originated from the same clone, suggesting nosocomial dissemination. From May to July 2002, three strains of vancomycin-resistant E. faecalis were isolated from two patients hospitalized in CMC and both patients were colonized by the vancomycin-resistant Enterococcus in skin lesions. All isolates from CMC and HCUSP were highly resistant to vancomycin and teicoplanin. The three strains from CMC had minimum inhibitory concentration >256 µg/ml for vancomycin, and 64 (CMC 1 and CMC 2) and 96 µg/ml (CMC 3) for teicoplanin, characterizing a profile of VanA resistance to glycopeptides. All strains had the presence of the transposon Tn1546 detected by PCR and were closely related when typed by PFGE. The dissemination of the E. faecalis VanA phenotype among hospitals located in different cities is of great concern because E. faecalis commonly colonizes the gastrointestinal tract of patients and healthy persons for periods varying from weeks to years, which, together with the persistence of vancomycin-resistant Enterococcus in hospital rooms after standard cleaning procedures, increases the risk of the dissemination and reservoir of the bacteria.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) has been the cause of major outbreaks and epidemics among hospitalized patients, with high mortality and morbidity rates. We studied the genomic diversity of MRSA strains isolated from patients with nosocomial infection in a University Hospital from 1991 to 2001. The study consisted of two periods: period I, from 1991 to 1993 and period II from 1995 to 2001. DNA was typed by pulsed-field gel electrophoresis and the similarity among the MRSA strains was determined by cluster analysis. During period I, 73 strains presented five distinctive DNA profiles: A, B, C, D, and E. Profile A was the most frequent DNA pattern and was identified in 55 (75.3%) strains; three closely related and four possibly related profiles were also identified. During period II, 80 (68.8%) of 117 strains showed the same endemic profile A identified during period I, 18 (13.7%) closely related profiles and 18 (13.7%) possibly related profiles and, only one strain presented an unrelated profile. Cluster analysis showed a 96% coefficient of similarity between profile A from period I and profile A from period II, which were considered to be from the same clone. The molecular monitoring of MRSA strains permitted the determination of the clonal dissemination and the maintenance of a dominant endemic strain during a 10-year period and the presence of closely and possibly related patterns for endemic profile A. However, further studies are necessary to improve the understanding of the dissemination of the endemic profile in this hospital.
Resumo:
Flavobacterium psychrophilum is the etiological agent of bacterial cold-water disease (BCWD) causing high fish mortalities and significant economic losses to the freshwater salmonid aquaculture industry around the world. Today BCWD outbreaks are mainly treated with environmentally hazardous antimicrobial agents and alternative preventative measures are urgently needed in order to ensure the well-being of animals and the sustainability of aquaculture. The diversity of pathogenic bacteria challenges the development of universal control strategies and in many cases the pathogen population structure, i.e. the total genetic diversity of the species must be taken into account. This work integrates the tools of modern molecular biology and conventional phenotypic microbiology to gain knowledge about the diversity and population structure of F. psychrophilum. The present work includes genetic characterization of a large collection of isolates collected from diverse origins and years, from aquaculture in a whole region including different countries, and provides the first international validation of a universal multilocus sequence typing (MLST) approach for unambiguous genetic typing of F. psychrophilum. Population structure analyses showed that the global F. psychrophilum population is subdivided into pathogenic species-specific clones, of which one particular genetic lineage, clonal complex CC-ST2, has been responsible for the majority of BCWD outbreaks in rainbow trout (Oncorhynchus mykiss) in European aquaculture facilities over several decades. Genotypic and phenotypic population heterogeneity affecting antimicrobial resistance in F. psychrophilum within BCWD outbreaks was discovered. Specific genotypes were associated with severe infections in farmed rainbow trout and Atlantic salmon (Salmo salar), and in addition to high adherence, antimicrobial resistance was strongly associated with outbreak strains. The study brought additional support for the hypothesis of an epidemic F. psychrophilum population structure, where recombination is an important force for the generation and maintenance of genetic diversity, and a significant contribution towards mapping the genetic diversity of this important fish pathogen. Evidence indicating dissemination of virulent strains with commercial movement of fish and fish products was strengthened.
Resumo:
Concept of crisis is the subject of many studies and publications in specialized articles and in journalistic publications. The thesis includes next key objectives: concept of the crisis is defined, disclosed external and internal factors affected company’s strategy, shown specific characteristics of Russian market and their influence on the foreign companies. The Master’s Thesis identifies successful foreign companies’ strategies on the Russian market during crises in 2008 and 2014. The study is qualitative and it is based on integrative analysis of literature, secondary data and results of the interview, conducted among foreign companies that operates on the Russian market Findings of the thesis show an effect of the crisis on the company’s strategy. It provides information about specific external and internal factors that affects on company’s strategy during the crisis. Theoretical findings help to understand complex concept of crisis and its main aspects in context of strategy. Analysis of specific characteristics of Russian market provides a base for assessment of efficiency of chosen strategy. Comparison between Russian cresses and companies behaviors in these periods shows how different is strategy because of the nature of the crisis. Results of the thesis could be used as a guideline for foreign companies in Russian market during the crisis period
Resumo:
Genes encoding lipoproteins LipL32, LipL41 and the outer-membrane protein OmpL1 of leptospira were recombined and cloned into a pVAX1 plasmid. BALB/c mice were immunized with LipL32 and recombined LipL32-41-OmpL1 using DNA-DNA, DNA-protein and protein-protein strategies, respectively. Prime immunization was on day 1, boost immunizations were on day 11 and day 21. Sera were collected from each mouse on day 35 for antibody, cytokine detection and microscopic agglutination test while spleen cells were collected for splenocyte proliferation assay. All experimental groups (N = 10 mice per group) showed statistically significant increases in antigen-specific antibodies, in cytokines IL-4 and IL-10, as well as in the microscopic agglutination test and splenocyte proliferation compared with the pVAX1 control group. The groups receiving the recombined LipL32-41-OmpL1 vaccine induced anti-LipL41 and anti-OmpL1 antibodies and yielded better splenocyte proliferation values than the groups receiving LipL32. DNA prime and protein boost immune strategies stimulated more antibodies than a DNA-DNA immune strategy and yielded greater cytokine and splenocyte proliferation than a protein-protein immune strategy. It is clear from these results that recombination of protective antigen genes lipL32, lipL41, and ompL1 and a DNA-protein immune strategy resulted in better immune responses against leptospira than single-component, LipL32, or single DNA or protein immunization.
Resumo:
Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.
Resumo:
Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.
Resumo:
Antiviral nucleosides are compounds that are used against viruses, such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). To act as therapeutic agent, the antiviral nucleoside needs to be phosphorylated to nucleotide in the body in three consecutive phosphorylation steps by cellular or viral enzymes. The first phosphorylation to the nucleoside monophosphate is often inefficient and leads to poor antiviral activity. The antiviral efficacy can be improved by applying a prodrug strategy and delivering the antiviral nucleoside directly as its monophosphate. In prodrug strategies of antiviral nucleotides, the negative charges on the phosphate moiety are temporarily masked with protecting groups. Once inside the cell, the protecting groups are removed by enzymatic or chemical processes. Many prodrug strategies apply biodegradable protecting groups, the removal of which is triggered by esterase enzymes. Several studies have, however, demonstrated that the removal rate of the second and subsequent esterase labile protecting groups significantly slows down after the first protecting group is removed due to the negative charge on the phosphodiester intermediate, which disturbs the catalytic site of the enzyme. In this thesis, esterase labile protecting group strategies where the issue of retardation could be avoided were studied. Prodrug candidates of antiviral nucleotides were synthesized and kinetic studies on the chemical and enzymatic stability were carried out. In the synthesized compounds, the second protecting group is cleaved from the monophosphate some other mechanism than esterase triggered activation or the structure of prodrug requires only one protecting group. In addition, esterase labile protecting group which is additionally thermally removable was studied. This protecting group was cleaved from oligomeric phosphodiesters both enzymatically and thermally and seems most attractive of the studied phosphate protecting groups. However, the rate of the thermal removal still is too slow to allow efficient protection of longer oligonucleotides and needs optimization. Key words: antiviral, nucleotide, prodrug, protecting group, biodegradable