982 resultados para Different shapes
Resumo:
Using numerical diagonalization we study the crossover among different random matrix ensembles (Poissonian, Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic ensemble (GSE)) realized in two different microscopic models. The specific diagnostic tool used to study the crossovers is the level spacing distribution. The first model is a one-dimensional lattice model of interacting hard-core bosons (or equivalently spin 1/2 objects) and the other a higher dimensional model of non-interacting particles with disorder and spin-orbit coupling. We find that the perturbation causing the crossover among the different ensembles scales to zero with system size as a power law with an exponent that depends on the ensembles between which the crossover takes place. This exponent is independent of microscopic details of the perturbation. We also find that the crossover from the Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE associated with symmetry breaking introduces a subdominant contribution. We also conjecture that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the dimensionality of the system.
Resumo:
It is well known that graphene, by virtue of its pi-cloud delocalization, has a continuum of electronic energy states and thus behaves nearly like a metal. Instances involving quenching of electronic energy excitation in fluorophores placed in the proximity of graphene sheets are well documented. In this paper, we perform theoretical investigations on the broadening of vibrational and electronic transitions in the vicinity of graphene. We find that for CO vibrations in the vicinity of undoped graphene, the broadening at a distance of 5 angstrom is similar to 0.008 cm(-1)((kappa) over tilde = 2, (kappa) over tilde being the effective dielectric constant). In comparison, for electronic transitions, the linewidth is much larger, being of the order of several cm(-1). Also, if the transition dipole were parallel to the graphene sheet, the linewidth would be reduced to half the value for the case where it is perpendicular, an observation which should be easy to check experimentally for electronic transitions. This should be observable for the f - f transitions (which are rather narrow) of Lanthanide complexes placed within a distance of a few nanometers from a graphene sheet. Further the linewidth would have a (distance)(-4) dependence as one varies the distance from graphene. (C) 2014 AIP Publishing LLC.
Resumo:
This paper addresses the formulation and numerical efficiency of various numerical models of different nonconserving time integrators for studying wave propagation in nonlinear hyperelastic waveguides. The study includes different nonlinear finite element formulations based on standard Galerkin finite element model, time domain spectral finite element model, Taylor-Galerkin finite element model, generalized Galerkin finite element model and frequency domain spectral finite element model. A comparative study on the computational efficiency of these different models is made using a hyperelastic rod model, and the optimal computational scheme is identified. The identified scheme is then used to study the propagation of transverse and longitudinal waves in a Timoshenko beam with Murnaghan material nonlinearity.
Resumo:
Based on an interdiffusion study using an incremental diffusion couple in the V-Ga binary system, we have shown that V diffuses via the lattice, whereas Ga does so via grain boundaries, for the growth of the V3Ga phase. We estimate the contributions from the two different mechanisms, which are usually difficult to delineate in an interdiffusion study. Available tracer diffusion studies and the atomic arrangement in the crystal structure have been considered for a discussion on the diffusion mechanisms.
Resumo:
The growth rate of high-speed mixing layer between two dissimilar gases is explored through the model free simulation results. To analyse the cause for the higher mixing layer growth rate in comparison to the existing values reported in literature, the results were compared with the model free simulations of mixing of two high-speed streams of nitrogen (similar gas) at matched temperature and density. The analysis indicates that pressure and density fluctuations no longer remain correlated completely for the mixing layer formed between two dissimilar gases at different temperatures in contrast to the complete pressure density correlation for similar gases. It has been observed that the correlation between temperature and density fluctuations is near -1.0 for dissimilar gases in the mixing layer region and is much higher than for similar gases. It is concluded that mixing layer of similar gases shows a decrease in growth rate due to compressibility effect, while that of dissimilar gases shows a decrease due to dominant temperature effect on density.
Resumo:
We report the synthesis and structural characterization of a polymeric ternary copper-cytosine-phenanthroline complex, Cu-4(phen)(3)-(mu(3)-cyt)(2)(mu-OH)(cyt)(OH)Cl-3](n)center dot 16H(2)O, where three cytosine ligands with different binding sites have simultaneously complexed to the four copper metal centres. Interestingly, the complex exhibits two different coordination geometries around the metal centres.
Resumo:
Frugivores with disparate foraging behavior are considered to vary in their seed dispersal effectiveness (SDE). Measured SDEs for gibbons and macaques for a primate-fruit' were comparable despite the different foraging and movement behavior of the primates. This could help facilitate fruit trait convergence in diverse fruit-frugivore networks.
Resumo:
Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and ``Atoms in Molecules'' analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O-H center dot center dot center dot O, O-H center dot center dot center dot pi, and C-H center dot center dot center dot pi. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact. (C) 2014 AIP Publishing LLC.
Resumo:
Doubly (Sn + F) doped zinc oxide (ZnO:Sn:F) thin films were deposited onto glass substrates using a simplified spray pyrolysis technique. The deposited films were annealed at 400 degrees C under two different ambiences (air and vacuum) for 2 h. The photocatalytic activity of these films was assessed through photocatalytic decolorization kinetics of Methylene Blue (MB) dye and the decolorization efficiency of the annealed films was compared with that of their as-deposited counterpart. The photocatalytic studies reveal that the ZnO:Sn:F films annealed under vacuum environment exhibits better photocatalytic efficiency when compared with both air annealed and as-deposited films. The SEM and TEM images depict that the surface of each of the films has an overlayer comprising of nanobars formed on a bottom layer, having spherical grains. The studies show that the diameter of the nanobars plays crucial role in enhancing the photocatalytic activity of the ZnO:Sn:F films. The structural, optical and electrical studies substantiate the discussions on the photocatalytic ability of the deposited films. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Adapting the power of secondary users (SUs) while adhering to constraints on the interference caused to primary receivers (PRxs) is a critical issue in underlay cognitive radio (CR). This adaptation is driven by the interference and transmit power constraints imposed on the secondary transmitter (STx). Its performance also depends on the quality of channel state information (CSI) available at the STx of the links from the STx to the secondary receiver and to the PRxs. For a system in which an STx is subject to an average interference constraint or an interference outage probability constraint at each of the PRxs, we derive novel symbol error probability (SEP)-optimal, practically motivated binary transmit power control policies. As a reference, we also present the corresponding SEP-optimal continuous transmit power control policies for one PRx. We then analyze the robustness of the optimal policies when the STx knows noisy channel estimates of the links between the SU and the PRxs. Altogether, our work develops a holistic understanding of the critical role played by different transmit and interference constraints in driving power control in underlay CR and the impact of CSI on its performance.
Resumo:
Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.
Resumo:
Ice volume estimates are crucial for assessing water reserves stored in glaciers. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan-Karakoram (HK) region. In this study, different existing methodologies are used to estimate the ice reserves: three area-volume relations, one slope-dependent volume estimation method, and two ice-thickness distribution models are applied to a recent, detailed, and complete glacier inventory of the HK region, spanning over the period 2000-2010 and revealing an ice coverage of 40 775 km(2). An uncertainty and sensitivity assessment is performed to investigate the influence of the observed glacier area and important model parameters on the resulting total ice volume. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 to 4737 km(3), depending on the approach. This range is lower than most previous estimates. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses. However, total volume estimates from area-related relations are larger than those from other approaches. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation.
Resumo:
Results from interface shear tests on sand-geosynthetic interfaces are examined in light of surface roughness of the interacting geosynthetic material. Three different types of interface shear tests carried out in the frame of direct shear-test setup are compared to understand the effect of parameters like box fixity and symmetry on the interface shear characteristics. Formation of shear bands close to the interface is visualized in the tests and the bands are analyzed using image-segmentation techniques in MATLAB. A woven geotextile with moderate roughness and a geomembrane with minimal roughness are used in the tests. The effect of surface roughness of the geosynthetic material on the formation of shear bands, movement of sand particles, and interface shear parameters are studied and compared through visual observations, image analyses, and image-segmentation techniques.
Resumo:
Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.
Resumo:
The relationship between the as-cast microstructure and creep behaviour of the heat-resistant MRI230D Mg alloy produced by two different casting technologies is investigated. The alloy in both ingot-casting (IC) and high pressure die-casting (HPDC) conditions consists of alpha-Mg, 06 ((Mg,AI)(2)Ca), Al-Mn and Sn-Mg-Ca rich phases. However, the HPDC alloy resulted in relatively finer grain size and higher volume fraction of finer, denser network of eutectic C36 phase in the as-cast microstructure as compared to that of the IC alloy. The superior creep resistance exhibited by the HPDC alloy at all the stress levels and temperatures employed in the present investigation was attributed to the more effective dispersion strengthening effect caused by the presence of finer and denser network of the C36 phase. The increased amount of the eutectic C36 phase was the only change observed in the microstructures of both alloys following creep tests. (C) 2015 Elsevier B.V. All rights reserved.