868 resultados para Dialkylzinc reagents


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-hybrid technology provides a simple way to isolate small peptide aptamers that specifically recognize and strongly bind to a protein of interest. These aptamers have the potential to dominantly interfere with specific activities of their target proteins and, therefore, could be used as in vivo inhibitors. Here we explore the ability to use peptide aptamers as in vivo inhibitors by expressing aptamers directed against cell cycle regulators in Drosophila. We expressed two peptide aptamers, each of which specifically recognizes one of the two essential cyclin-dependent kinases (Cdks), DmCdk1 and DmCdk2, in Drosophila. Expression of each Cdk aptamer during organogenesis caused adult eye defects typical of those caused by cell cycle inhibition. Co-overexpression of DmCdk1 or DmCdk2 resulted in suppression of the eye phenotypes, indicating that each aptamer interacts with a Cdk target in vivo and suggesting that these peptides disrupt normal eye development by inhibiting Cdk function. Moreover, the specificity of each aptamer for one of the two Cdks as determined in two-hybrid assays was retained in Drosophila. Combined, our results demonstrate that peptide aptamers generated by yeast two-hybrid methods can serve as inhibitory reagents to target specific proteins in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall folded (global) structure of mRNA may be critical to translation and turnover control mechanisms, but it has received little experimental attention. Presented here is a comparative analysis of the basic features of the global secondary structure of a synthetic mRNA and the same intracellular eukaryotic mRNA by dimethyl sulfate (DMS) structure probing. Synthetic MFA2 mRNA of Saccharomyces cerevisiae first was examined by using both enzymes and chemical reagents to determine single-stranded and hybridized regions; RNAs with and without a poly(A) tail were compared. A folding pattern was obtained with the aid of the mfold program package that identified the model that best satisfied the probing data. A long-range structural interaction involving the 5′ and 3′ untranslated regions and causing a juxtaposition of the ends of the RNA, was examined further by a useful technique involving oligo(dT)-cellulose chromatography and antisense oligonucleotides. DMS chemical probing of A and C nucleotides of intracellular MFA2 mRNA was then done. The modification data support a very similar intracellular structure. When low reactivity of A and C residues is found in the synthetic RNA, ≈70% of the same sites are relatively more resistant to DMS modification in vivo. A slightly higher sensitivity to DMS is found in vivo for some of the A and C nucleotides predicted to be hybridized from the synthetic structural model. With this small mRNA, the translation process and mRNA-binding proteins do not block DMS modifications, and all A and C nucleotides are modified the same or more strongly than with the synthetic RNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p53 tumor suppressor protein negatively regulates cell growth, mainly through the transactivation of its downstream target genes. As a sequence-specific DNA binding transcription factor, p53 specifically binds to a 20-bp consensus motif 5′-PuPuPuC(A/T) (T/A)GPyPyPyPuPuPuC(A/T)(T/A)GPyPyPy-3′. We have now identified, partially purified, and characterized an additional ≈40-kDa nuclear protein, p53CP (p53 competing protein), that specifically binds to the consensus p53 binding sites found in several p53 downstream target genes, including Waf-1, Gadd45, Mdm2, Bax, and RGC. The minimal sequence requirement for binding is a 14-bp motif, 5′-CTTGCTTGAACAGG-3′ [5′-C(A/T)(T/A)GPyPyPyPuPuPuC(A/T)(T/A)G-3′], which includes the central nucleotides of the typical p53 binding site with one mismatch. p53CP and p53 (complexed with antibody) showed a similar binding specificity to Waf-1 site but differences in Gadd45 and T3SF binding. Like p53, p53CP also binds both double- and single-stranded DNA oligonucleotides. Important to note, cell cycle blockers and DNA damaging reagents, which induce p53 binding activity, were found to inhibit p53CP binding in p53-positive, but not in p53-negative, cells. This finding suggested a p53-dependent coordinate regulation of p53 and p53CP in response to external stimuli. p53CP therefore could be a third member of the p53 family, in addition to p53 and p73, a newly identified p53 homolog. p53CP, if sequestering p53 from its DNA binding sites through competitive binding, may provide a novel mechanism of p53 inactivation. Alternatively, p53CP may have p53-like functions by binding and transactivating p53 downstream target genes. Cloning of the p53CP gene ultimately will resolve this issue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chicken erythroid AE1 anion exchangers receive endoglycosidase F (endo F)-sensitive sugar modifications in their initial transit through the secretory pathway. After delivery to the plasma membrane, anion exchangers are internalized and recycled to the Golgi where they acquire additional N-linked modifications that are resistant to endo F. During recycling, some of the anion exchangers become detergent insoluble. The acquisition of detergent insolubility correlates with the association of the anion exchanger with cytoskeletal ankyrin. Reagents that inhibit different steps in the endocytic pathway, including 0.4 M sucrose, ammonium chloride, and brefeldin A, block the acquisition of endo F-resistant sugars and the acquisition of detergent insolubility by newly synthesized anion exchangers. The inhibitory effects of ammonium chloride on anion exchanger processing are rapidly reversible. Furthermore, AE1 anion exchangers become detergent insoluble more rapidly than they acquire endo F-resistant modifications in cells recovering from an ammonium chloride block. This suggests that the cytoskeletal association of the recycling anion exchangers occurs after release from the compartment where they accumulate due to ammonium chloride treatment, and prior to their transit through the Golgi. The recycling pool of newly synthesized anion exchangers is reflected in the steady-state distribution of the polypeptide. In addition to plasma membrane staining, anion exchanger antibodies stain a perinuclear compartment in erythroid cells. This perinuclear AE1-containing compartment is also stained by ankyrin antibodies and partially overlaps the membrane compartment stained by NBD C6-ceramide, a Golgi marker. Detergent extraction of erythroid cells in situ has suggested that a substantial fraction of the perinuclear pool of AE1 is cytoskeletal associated. The demonstration that erythroid anion exchangers interact with elements of the cytoskeleton during recycling to the Golgi suggests the cytoskeleton may be involved in the post-Golgi trafficking of this membrane transporter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Posttranslationally modified forms of tubulin accumulate in the subset of stabilized microtubules (MTs) in cells but are not themselves involved in generating MT stability. We showed previously that stabilized, detyrosinated (Glu) MTs function to localize vimentin intermediate filaments (IFs) in fibroblasts. To determine whether tubulin detyrosination or MT stability is the critical element in the preferential association of IFs with Glu MTs, we microinjected nonpolymerizable Glu tubulin into cells. If detyrosination is critical, then soluble Glu tubulin should be a competitive inhibitor of the IF–MT interaction. Before microinjection, Glu tubulin was rendered nonpolymerizable and nontyrosinatable by treatment with iodoacetamide (IAA). Microinjected IAA-Glu tubulin disrupted the interaction of IFs with MTs, as assayed by the collapse of IFs to a perinuclear location, and had no detectable effect on the array of Glu or tyrosinated MTs in cells. Conversely, neither IAA-tyrosinated tubulin nor untreated Glu tubulin, which assembled into MTs, caused collapse of IFs when microinjected. The epitope on Glu tubulin responsible for interfering with the Glu MT–IF interaction was mapped by microinjecting tubulin fragments of α-tubulin. The 14-kDa C-terminal fragment of Glu tubulin (α-C Glu) induced IF collapse, whereas the 36-kDa N-terminal fragment of α-tubulin did not alter the IF array. The epitope required more than the detyrosination site at the C terminus, because a short peptide (a 7-mer) mimicking the C terminus of Glu tubulin did not disrupt the IF distribution. We previously showed that kinesin may mediate the interaction of Glu MTs and IFs. In this study we found that kinesin binding to MTs in vitro was inhibited by the same reagents (i.e., IAA-Glu tubulin and α-C Glu) that disrupted the IF–Glu MT interaction in vivo. These results demonstrate for the first time that tubulin detyrosination functions as a signal for the recruitment of IFs to MTs via a mechanism that is likely to involve kinesin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vitronectin receptor is a member of the integrin family of adhesion protein receptors and binds a broad spectrum of ligands, including fibronectin and fibrinogen in addition to vitronectin. We have generated four mAbs that recognize the murine αvβ3 vitronectin receptor. Biochemical and expression analyses showed that two of the mAbs are specific for the αv chain, and two are specific for the β3 chain. The mAbs are effective blocking reagents and inhibited cell adhesion to vitronectin, fibrinogen, and fibronectin. Staining analysis revealed expression of αv and β3 on certain populations of murine thymocytes, splenocytes, and bone marrow cells. The expression of αv and β3 appeared to be modulated at specific stages of thymocyte development, suggesting a possible function for the αvβ3 vitronectin receptor in T cell development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of pantethine, glutathione, and selected chemical reagents on the anti-aggregation activity of α-crystallin was evaluated. Protein aggregation was monitored by light scattering of solutions of denatured βL-crystallin or alcohol dehydrogenase (ADH). The ratios of βL-crystallin/α-crystallin and ADH/α-crystallin were adjusted so that partial inhibition of protein aggregation at 60°C or 37°C, respectively, was observed and modulation of the chaperone action of α-crystallin could be evaluated easily with selected endogenous metabolites. Enhancement of the anti-aggregation activity in the βL-crystallin assay was strongest with pantethine, which appeared to interact with α-crystallin. Enhancement of the anti-aggregation activity in the ADH assay was strongest with glutathione which appeared to interact with ADH. The results indicated that the products of common metabolic pathways can modulate the chaperone-like effects of α-crystallin on protein aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical cross-linking is a potentially useful technique for probing the architecture of multiprotein complexes. However, analyses using typical bifunctional cross-linkers often suffer from poor yields, and large-scale modification of nucleophilic side chains can result in artifactual results attributable to structural destabilization. We report here the de novo design and development of a type of protein cross-linking reaction that uses a photogenerated oxidant to mediate rapid and efficient cross-linking of associated proteins. The process involves brief photolysis of tris-bipyridylruthenium(II) dication with visible light in the presence of the electron acceptor ammonium persulfate and the proteins of interest. Very high yields of cross-linked products can be obtained with irradiation times of <1 second. This chemistry obviates many of the problems associated with standard cross-linking reagents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large library of phage-displayed human single-chain Fv antibodies (scFv), containing 6.7 × 109 members, was generated by improving the steps of library construction. Fourteen different protein antigens were used to affinity select antibodies from this library. A panel of specific antibodies was isolated with each antigen, and each panel contained an average of 8.7 different scFv. Measurements of antibody–antigen interactions revealed several affinities below 1 nM, comparable to affinities observed during the secondary murine immune response. In particular, four different scFv recognizing the ErbB2 protein had affinities ranging from 220 pM to 4 nM. Antibodies derived from the library proved to be useful reagents for immunoassays. For example, antibodies generated to the Chlamydia trachomatis elementary bodies stained Chlamydia-infected cells, but not uninfected cells. These results demonstrate that phage antibody libraries are ideally suited for the rapid production of panels of high-affinity mAbs to a wide variety of protein antigens. Such libraries should prove especially useful for generating reagents to study the function of gene products identified by genome projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an efficient technique for the selective chemical and biological manipulation of the contents of individual cells. This technique is based on the electric-field-induced permeabilization (electroporation) in biological membranes using a low-voltage pulse generator and microelectrodes. A spatially highly focused electric field allows introduction of polar cell-impermeant solutes such as fluorescent dyes, fluorogenic reagents, and DNA into single cells. The high spatial resolution of the technique allows for design of, for example, cellular network constructions in which cells in close contact with each other can be made to possess different biochemical, biophysical, and morphological properties. Fluorescein, and fluo-3 (a calcium-sensitive fluorophore), are electroporated into the soma of cultured single progenitor cells derived from adult rat hippocampus. Fluo-3 also is introduced into individual submicrometer diameter processes of thapsigargin-treated progenitor cells, and a plasmid vector cDNA construct (pRAY 1), expressing the green fluorescent protein, is electroporated into cultured single COS 7 cells. At high electric field strengths, observations of dye-transfer into organelles are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FKBP ligand homodimers can be used to activate signaling events inside cells and animals that have been engineered to express fusions between appropriate signaling domains and FKBP. However, use of these dimerizers in vivo is potentially limited by ligand binding to endogenous FKBP. We have designed ligands that bind specifically to a mutated FKBP over the wild-type protein by remodeling an FKBP-ligand interface to introduce a specificity binding pocket. A compound bearing an ethyl substituent in place of a carbonyl group exhibited sub-nanomolar affinity and 1,000-fold selectivity for a mutant FKBP with a compensating truncation of a phenylalanine residue. Structural and functional analysis of the new pocket showed that recognition is surprisingly relaxed, with the modified ligand only partially filling the engineered cavity. We incorporated the specificity pocket into a fusion protein containing FKBP and the intracellular domain of the Fas receptor. Cells expressing this modified chimeric protein potently underwent apoptosis in response to AP1903, a homodimer of the modified ligand, both in culture and when implanted into mice. Remodeled dimerizers such as AP1903 are ideal reagents for controlling the activities of cells that have been modified by gene therapy procedures, without interference from endogenous FKBP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide–major histocompatibility complex (MHC) class I or class II ligands recognized by αβ T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide–MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46–61)–Ak or HEL-(116–129)–Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide–MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46–61)–Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (Jahraus et al., 1998). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (Defacque et al., 2000a), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proteasome is a large protease complex consisting of multiple catalytic subunits that function simultaneously to digest protein substrates. This complexity has made deciphering the role each subunit plays in the generation of specific protein fragments difficult. Positional scanning libraries of peptide vinyl sulfones were generated in which the amino acid located directly at the site of hydrolysis (P1 residue) was held constant and sequences distal to that residue (P2, P3, and P4 positions) were varied across all natural amino acids (except cysteine and methionine). Binding information for each of the individual catalytic subunits was obtained for each library under a variety of different conditions. The resulting specificity profiles indicated that substrate positions distal to P1 are critical for directing substrates to active subunits in the complex. Furthermore, specificity profiles of IFN-γ-regulated subunits closely matched those of their noninducible counterparts, suggesting that subunit swapping may modulate substrate processing by a mechanism that does require a change in the primary sequence specificity of individual catalytic subunits in the complex. Finally, specificity profiles were used to design specific inhibitors of a single active site in the complex. These reagents can be used to further establish the role of each subunit in substrate processing by the proteasome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions of sulfhydryl reagents with introduced cysteines in the pore-forming (Kir6.2) subunits of the KATP channel were examined. 2-Aminoethyl methanethiosulfonate (MTSEA+) failed to modify Cd2+-insensitive control-Kir6.2 channels, but rapidly and irreversibly modified Kir6.2[L164C] (L164C) channels. Although a single Cd2+ ion is coordinated by L164C, four MTSEA+ “hits” can occur, each sequentially reducing the single-channel current. A dimeric fusion of control-Kir6.2 and L164C subunits generates Cd2+-insensitive channels, confirming that at least three cysteines are required for coordination, but MTSEA+ modification of the dimer occurs in two hits. L164C channels were not modified by bromotrimethyl ammoniumbimane (qBBr+), even though qBBr+ caused voltage-dependent block (as opposed to modification) that was comparable to that of MTSEA+ or 3-(triethylammonium)propyl methanethiosulfonate (MTSPTrEA+), implying that qBBr+ can also enter the inner cavity but does not modify L164C residues. The Kir channel pore structure was modeled by homology with the KcsA crystal structure. A stable conformation optimally places the four L164C side chains for coordination of a single Cd2+ ion. Modification of these cysteines by up to four MTSEA+ (or three MTSPTrEA+, or two qBBr+) does not require widening of the cavity to accommodate the derivatives within it. However, like the KcsA crystal structure, the energy-minimized model shows a narrowing at the inner entrance, and in the Kir6.2 model this narrowing excludes all ions. To allow entry of ions as large as MTSPTrEA+ or qBBr+, the entrance must widen to >8 Å, but this widening is readily accomplished by minimal M2 helix motion and side-chain rearrangement.