878 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision
Resumo:
Diet-related chronic diseases severely affect personal and global health. However, managing or treating these diseases currently requires long training and high personal involvement to succeed. Computer vision systems could assist with the assessment of diet by detecting and recognizing different foods and their portions in images. We propose novel methods for detecting a dish in an image and segmenting its contents with and without user interaction. All methods were evaluated on a database of over 1600 manually annotated images. The dish detection scored an average of 99% accuracy with a .2s/image run time, while the automatic and semi-automatic dish segmentation methods reached average accuracies of 88% and 91% respectively, with an average run time of .5s/image, outperforming competing solutions.
Resumo:
The medical education community is working-across disciplines and across the continuum-to address the current challenges facing the medical education system and to implement strategies to improve educational outcomes. Educational technology offers the promise of addressing these important challenges in ways not previously possible. The authors propose a role for virtual patients (VPs), which they define as multimedia, screen-based interactive patient scenarios. They believe VPs offer capabilities and benefits particularly well suited to addressing the challenges facing medical education. Well-designed, interactive VP-based learning activities can promote the deep learning that is needed to handle the rapid growth in medical knowledge. Clinically oriented learning from VPs can capture intrinsic motivation and promote mastery learning. VPs can also enhance trainees' application of foundational knowledge to promote the development of clinical reasoning, the foundation of medical practice. Although not the entire solution, VPs can support competency-based education. The data created by the use of VPs can serve as the basis for multi-institutional research that will enable the medical education community both to better understand the effectiveness of educational interventions and to measure progress toward an improved system of medical education.
Resumo:
The concentrations of suspended particulate pigments, C37-C38 alkenones, total organic carbon and nitrogen in the Ligurian Sea (northwestern Mediterranean) have been studied at 5 and 30 m depth during well defined thermocline conditions. An accurate description of the short term changes of these compounds has been achieved by means of four 36-h sampling cycles each encompassing consecutive filtration periods of 4 h. During sampling the thermocline changes were followed closely by simultaneous measurements of water column temperature, salinity and other physical parameters. The analysis of the collected samples indicates that the Haptophyte pigments and alkenones are essentially synthesized at the levels of highest primary production and therefore the C37 alkenone record reflects the seawater temperature at this depth level. The study also shows that part of these alkenones are distributed throughout the water column in association to the suspended particles. This process results in C37 alkenone distributions that, due to their high resistance to chemical and microbial degradation, record the temperature of the highest primary productivity layers even at shallow (e.g., 5 m depth) or deep (e.g., 1100 m depth) waters.
Resumo:
Oxygen and carbon stable isotope data of Pyrgo murrhina and flux rates of calcium carbonate in the bio- and magnetostratigraphically dated sediment sequence at DSDP Site 141 were used for a reconstruction of the deep-water circulation in the Northeast Atlantic during Late Miocene and Pliocene times. A distinct change towards reduced advection of deep water recorded near 5.4 Ma is contemporaneous with the cessation of the outflow of the saline Mediterranean water into the Atlantic. During the Pliocene, between 4.5 and 2.75 Ma and between 2.1 and 1.8 Ma, North Atlantic Deep Water (NADW) circulation was sluggish and Site 141 possibly influenced by Antarctic Bottom Water (AABW). Near 2.75 Ma, the advection of well-oxidized NADW was strongly intensified. This change is related to an onset of major Arctic ice growth and/or a major cooling of NADW.
Resumo:
Organic carbon in bays of the White Sea was studied for the first time in 1987. Bays of various types in the Kandalaksha Gulf and the Onega Gulf were investigated. Concentration of C_org ranged from 3.5 to 9 mg/l. The highest weighted-mean concentration of C_org occurred in shallow bays of the Onega Gulf (Suma Bay - 6.17 mg/l, Kolezhma Bay - 5.25 mg/1); slightly lower levels occurred in the Soroka Bay (4.85 mg/l) and Kem' Bay (4.78 mg/l). The lowest concentrations were in deep bays of the Kandalaksha Gulf (Chupa Bay - 4.35 mg/l, Velikaya Salma Bay - 4.10 mg/l). As a rule C_org concentration decreases with depth in deep-water bays (but increases slightly in the thermocline layer). The key factor governing organic matter concentration in the bays of the Onega Gulf with river runoff is allochthonous terrigenous organic matter, as indicated by negative correlation of C_org with salinity (R=-0.83+/-0.07, p=0.96) and nonsignificant correlation with primary production.
Resumo:
The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth bservation, demonstrating the applicability and usefulness of our approach.
Resumo:
Late Aptian through middle Eocene nannofossil assemblages were recovered from a continuously cored section at Site 585. Poorly preserved assemblages of low diversity were observed in samples taken throughout both upper Aptian and/or lower Albian sandstone and mudstone and middle Cenomanian to lower Turonian claystone at the base of this section. A 70-m interval barren of nannofossils separates these poorly preserved assemblages from those recovered from an upper Campanian chalk farther uphole. This chalk marks the most significant change in carbonate deposition at this site, and deposition of interbedded zeolitic claystone and sediment of varied nannofossil content proceeded without major interruption until the early Paleocene (Fasciculithus tympaniformis Zone, CP4). A middle Eocene chalk (dated by nannofossils) unconformably overlies lower Paleocene sediment in both Holes 585 and 585A. Only a few interbeds of zeolitic claystone are present within 100 m of nannofossil-rich sediment above this unconformity. This entire interval is cautiously assigned to the Discoaster sublodoensis Zone (CP 12), which indicates a sedimentation rate almost an order of magnitude higher than expected from normal pelagic sedimentation. The most obvious feature of the assemblages examined from these cores is the amount of reworked material. Rare Nannoconus elongatus and Braarudosphaera sp. in several upper Campanian to middle Eocene samples demonstrate the contribution of pelagic material from upslope and, along with other reworked species throughout the Upper Cretaceous samples examined, provide evidence contradictory to an excursion of the calcium compensation depth to deep basinal settings in the western Pacific during the Campanian-Maestrichtian time (Thierstein, 1979). The overwhelming dominance of reworked species in all middle Eocene samples examined and the persistence of these assemblages throughout such a large thickness of sediment suggest that currents that redeposited material intensified at this time and may be associated with the formation of the lower Paleocene/middle Eocene unconformity at this site. A single surface core of calcareous ooze taken from Hole 585A dated as early Pleistocene contains abundant and well-preserved late Miocene and Pliocene species.
Resumo:
We propose a weakly supervised method to arrange images of a given category based on the relative pose between the camera and the object in the scene. Relative poses are points on a sphere centered at the object in a given canonical pose, which we call object viewpoints. Our method builds a graph on this sphere by assigning images with similar viewpoint to the same node and by connecting nodes if they are related by a small rotation. The key idea is to exploit a large unlabeled dataset to validate the likelihood of dominant 3D planes of the object geometry. A number of 3D plane hypotheses are evaluated by applying small 3D rotations to each hypothesis and by measuring how well the deformed images match other images in the dataset. Correct hypotheses will result in deformed images that correspond to plausible views of the object, and thus will likely match well other images in the same category. The identified 3D planes are then used to compute affinities between images related by a change of viewpoint. We then use the affinities to build a view graph via a greedy method and the maximum spanning tree.
Resumo:
The important technological advances experienced along the last years have resulted in an important demand for new and efficient computer vision applications. On the one hand, the increasing use of video editing software has given rise to a necessity for faster and more efficient editing tools that, in a first step, perform a temporal segmentation in shots. On the other hand, the number of electronic devices with integrated cameras has grown enormously. These devices require new, fast, and efficient computer vision applications that include moving object detection strategies. In this dissertation, we propose a temporal segmentation strategy and several moving object detection strategies, which are suitable for the last generation of computer vision applications requiring both low computational cost and high quality results. First, a novel real-time high-quality shot detection strategy is proposed. While abrupt transitions are detected through a very fast pixel-based analysis, gradual transitions are obtained from an efficient edge-based analysis. Both analyses are reinforced with a motion analysis that allows to detect and discard false detections. This analysis is carried out exclusively over a reduced amount of candidate transitions, thus maintaining the computational requirements. On the other hand, a moving object detection strategy, which is based on the popular Mixture of Gaussians method, is proposed. This strategy, taking into account the recent history of each image pixel, adapts dynamically the amount of Gaussians that are required to model its variations. As a result, we improve significantly the computational efficiency with respect to other similar methods and, additionally, we reduce the influence of the used parameters in the results. Alternatively, in order to improve the quality of the results in complex scenarios containing dynamic backgrounds, we propose different non-parametric based moving object detection strategies that model both background and foreground. To obtain high quality results regardless of the characteristics of the analyzed sequence we dynamically estimate the most adequate bandwidth matrices for the kernels that are used in the background and foreground modeling. Moreover, the application of a particle filter allows to update the spatial information and provides a priori knowledge about the areas to analyze in the following images, enabling an important reduction in the computational requirements and improving the segmentation results. Additionally, we propose the use of an innovative combination of chromaticity and gradients that allows to reduce the influence of shadows and reflects in the detections.
Resumo:
Industrial applications of computer vision sometimes require detection of atypical objects that occur as small groups of pixels in digital images. These objects are difficult to single out because they are small and randomly distributed. In this work we propose an image segmentation method using the novel Ant System-based Clustering Algorithm (ASCA). ASCA models the foraging behaviour of ants, which move through the data space searching for high data-density regions, and leave pheromone trails on their path. The pheromone map is used to identify the exact number of clusters, and assign the pixels to these clusters using the pheromone gradient. We applied ASCA to detection of microcalcifications in digital mammograms and compared its performance with state-of-the-art clustering algorithms such as 1D Self-Organizing Map, k-Means, Fuzzy c-Means and Possibilistic Fuzzy c-Means. The main advantage of ASCA is that the number of clusters needs not to be known a priori. The experimental results show that ASCA is more efficient than the other algorithms in detecting small clusters of atypical data.
Resumo:
This paper presents a computer vision system that successfully discriminates between weed patches and crop rows under uncontrolled lighting in real-time. The system consists of two independent subsystems, a fast image processing delivering results in real-time (Fast Image Processing, FIP), and a slower and more accurate processing (Robust Crop Row Detection, RCRD) that is used to correct the first subsystem's mistakes. This combination produces a system that achieves very good results under a wide variety of conditions. Tested on several maize videos taken of different fields and during different years, the system successfully detects an average of 95% of weeds and 80% of crops under different illumination, soil humidity and weed/crop growth conditions. Moreover, the system has been shown to produce acceptable results even under very difficult conditions, such as in the presence of dramatic sowing errors or abrupt camera movements. The computer vision system has been developed for integration into a treatment system because the ideal setup for any weed sprayer system would include a tool that could provide information on the weeds and crops present at each point in real-time, while the tractor mounting the spraying bar is moving
Resumo:
Many existing engineering works model the statistical characteristics of the entities under study as normal distributions. These models are eventually used for decision making, requiring in practice the definition of the classification region corresponding to the desired confidence level. Surprisingly enough, however, a great amount of computer vision works using multidimensional normal models leave unspecified or fail to establish correct confidence regions due to misconceptions on the features of Gaussian functions or to wrong analogies with the unidimensional case. The resulting regions incur in deviations that can be unacceptable in high-dimensional models. Here we provide a comprehensive derivation of the optimal confidence regions for multivariate normal distributions of arbitrary dimensionality. To this end, firstly we derive the condition for region optimality of general continuous multidimensional distributions, and then we apply it to the widespread case of the normal probability density function. The obtained results are used to analyze the confidence error incurred by previous works related to vision research, showing that deviations caused by wrong regions may turn into unacceptable as dimensionality increases. To support the theoretical analysis, a quantitative example in the context of moving object detection by means of background modeling is given.
Resumo:
This article presents the proposal of the Computer Vision Group to the first phase of the international competition “Concurso de Ingeniería de Control 2012, Control Aut ́onomo del seguimiento de trayectorias de un vehículo cuatrirrotor”. This phase consists mainly of two parts: identifying a model and designing a trajectory controller for the AR Drone quadrotor. For the identification task, two models are proposed: a simplified model that captures only the main dynamics of the quadrotor, and a second model based on the physical laws underlying the AR Drone behavior. The trajectory controller design is based on the simplified model, whereas the physical model is used to tune the controller to attain a certain level of robust stability to model uncertainties. The controller design is simplified by the hypothesis that accurate positions sensors will be available to implement a feedback controller.
Resumo:
La segmentación de imágenes es un campo importante de la visión computacional y una de las áreas de investigación más activas, con aplicaciones en comprensión de imágenes, detección de objetos, reconocimiento facial, vigilancia de vídeo o procesamiento de imagen médica. La segmentación de imágenes es un problema difícil en general, pero especialmente en entornos científicos y biomédicos, donde las técnicas de adquisición imagen proporcionan imágenes ruidosas. Además, en muchos de estos casos se necesita una precisión casi perfecta. En esta tesis, revisamos y comparamos primero algunas de las técnicas ampliamente usadas para la segmentación de imágenes médicas. Estas técnicas usan clasificadores a nivel de pixel e introducen regularización sobre pares de píxeles que es normalmente insuficiente. Estudiamos las dificultades que presentan para capturar la información de alto nivel sobre los objetos a segmentar. Esta deficiencia da lugar a detecciones erróneas, bordes irregulares, configuraciones con topología errónea y formas inválidas. Para solucionar estos problemas, proponemos un nuevo método de regularización de alto nivel que aprende información topológica y de forma a partir de los datos de entrenamiento de una forma no paramétrica usando potenciales de orden superior. Los potenciales de orden superior se están popularizando en visión por computador, pero la representación exacta de un potencial de orden superior definido sobre muchas variables es computacionalmente inviable. Usamos una representación compacta de los potenciales basada en un conjunto finito de patrones aprendidos de los datos de entrenamiento que, a su vez, depende de las observaciones. Gracias a esta representación, los potenciales de orden superior pueden ser convertidos a potenciales de orden 2 con algunas variables auxiliares añadidas. Experimentos con imágenes reales y sintéticas confirman que nuestro modelo soluciona los errores de aproximaciones más débiles. Incluso con una regularización de alto nivel, una precisión exacta es inalcanzable, y se requeire de edición manual de los resultados de la segmentación automática. La edición manual es tediosa y pesada, y cualquier herramienta de ayuda es muy apreciada. Estas herramientas necesitan ser precisas, pero también lo suficientemente rápidas para ser usadas de forma interactiva. Los contornos activos son una buena solución: son buenos para detecciones precisas de fronteras y, en lugar de buscar una solución global, proporcionan un ajuste fino a resultados que ya existían previamente. Sin embargo, requieren una representación implícita que les permita trabajar con cambios topológicos del contorno, y esto da lugar a ecuaciones en derivadas parciales (EDP) que son costosas de resolver computacionalmente y pueden presentar problemas de estabilidad numérica. Presentamos una aproximación morfológica a la evolución de contornos basada en un nuevo operador morfológico de curvatura que es válido para superficies de cualquier dimensión. Aproximamos la solución numérica de la EDP de la evolución de contorno mediante la aplicación sucesiva de un conjunto de operadores morfológicos aplicados sobre una función de conjuntos de nivel. Estos operadores son muy rápidos, no sufren de problemas de estabilidad numérica y no degradan la función de los conjuntos de nivel, de modo que no hay necesidad de reinicializarlo. Además, su implementación es mucho más sencilla que la de las EDP, ya que no requieren usar sofisticados algoritmos numéricos. Desde un punto de vista teórico, profundizamos en las conexiones entre operadores morfológicos y diferenciales, e introducimos nuevos resultados en este área. Validamos nuestra aproximación proporcionando una implementación morfológica de los contornos geodésicos activos, los contornos activos sin bordes, y los turbopíxeles. En los experimentos realizados, las implementaciones morfológicas convergen a soluciones equivalentes a aquéllas logradas mediante soluciones numéricas tradicionales, pero con ganancias significativas en simplicidad, velocidad y estabilidad. ABSTRACT Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pairwise regularization which is insufficient in many cases. We study their difficulties to capture high-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a nonparametric way using high-order potentials. High-order potentials are becoming increasingly popular in computer vision. However, the exact representation of a general higher order potential defined over many variables is computationally infeasible. We use a compact representation of the potentials based on a finite set of patterns learned fromtraining data that, in turn, depends on the observations. Thanks to this representation, high-order potentials can be converted into pairwise potentials with some added auxiliary variables and minimized with tree-reweighted message passing (TRW) and belief propagation (BP) techniques. Both synthetic and real experiments confirm that our model fixes the errors of weaker approaches. Even with high-level regularization, perfect accuracy is still unattainable, and human editing of the segmentation results is necessary. The manual edition is tedious and cumbersome, and tools that assist the user are greatly appreciated. These tools need to be precise, but also fast enough to be used in real-time. Active contours are a good solution: they are good for precise boundary detection and, instead of finding a global solution, they provide a fine tuning to previously existing results. However, they require an implicit representation to deal with topological changes of the contour, and this leads to PDEs that are computationally costly to solve and may present numerical stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the contour evolution PDE by the successive application of a set of morphological operators defined on a binary level-set. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier than their PDE counterpart, since they do not require the use of sophisticated numerical algorithms. From a theoretical point of view, we delve into the connections between differential andmorphological operators, and introduce novel results in this area. We validate the approach providing amorphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.
Resumo:
In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.