921 resultados para Delay systems
Resumo:
The foreseen evolution of chip architectures to higher number of, heterogeneous, cores, with non-uniform memory and non-coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as an alternative to lock-based synchronisation. However, STM relies on the possibility of aborting conflicting transactions to maintain data consistency, which impacts on the responsiveness and timing guarantees required by real-time systems. In these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions are upperbounded and task sets can be feasibly scheduled. In this paper we defend the role of the transaction contention manager to reduce the number of transaction retries and to help the real-time scheduler assuring schedulability. For such purpose, the contention management policy should be aware of on-line scheduling information.
Resumo:
Compositional schedulability analysis of hierarchical realtime systems is a well-studied problem. Various techniques have been developed to abstract resource requirements of components in such systems, and schedulability has been addressed using these abstract representations (also called component interfaces). These approaches for compositional analysis incur resource overheads when they abstract components into interfaces. In this talk, we define notions of resource schedulability and optimality for component interfaces, and compare various approaches.
Resumo:
Database query languages on relations (for example SQL) make it possible to join two relations. This operation is very common in desktop/server database systems but unfortunately query processing systems in networked embedded computer systems currently do not support this operation; specifically, the query processing systems TAG, TinyDB, Cougar do not support this. We show how a prioritized medium access control (MAC) protocol can be used to efficiently execute the database operation join for networked embedded computer systems where all computer nodes are in a single broadcast domain.
Resumo:
Since its official public release, Android has captured the interest from companies, developers and the general audience. From that time up to now, this software platform has been constantly improved either in terms of features or supported hardware and, at the same time, extended to new types of devices different from the originally intended mobile ones. However, there is a feature that has not been explored yet - its real-time capabilities. This paper intends to explore this gap and provide a basis for discussion on the suitability of Android in order to be used in Open Real-Time environments. By analysing the software platform, with the main focus on the virtual machine and its underlying operating system environments, we are able to point out its current limitations and, therefore, provide a hint on different perspectives of directions in order to make Android suitable for these environments. It is our position that Android may provide a suitable architecture for real-time embedded systems, but the real-time community should address its limitations in a joint effort at all of the platform layers.
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented
Resumo:
In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
Resumo:
In this paper we propose a framework for the support of mobile application with Quality of Service (QoS) requirements, such as voice or video, capable of supporting distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
Temporal isolation is an increasingly relevant con- cern in particular for ARINC-351 and virtualisation- based systems. Traditional approaches like the rate- based scheduling framework RBED do not take into account the impact of preemptions in terms of loss of working set in the acceleration hardware (e.g. caches). While some improvements have been suggested in the literature, they are overly heavy in the presence of small high-priority tasks such as interrupt service routines. Within this paper we propose an approach enabling adaptive assessment of this preemption delay in a tem- poral isolation framework with special consideration of capabilities and limitations of the approach.
Resumo:
Developing an efficient server-based real-time scheduling solution that supports dynamic task-level parallelism is now relevant to even the desktop and embedded domains and no longer only to the high performance computing market niche. This paper proposes a novel approach that combines the constantbandwidth server abstraction with a work-stealing load balancing scheme which, while ensuring isolation among tasks, enables a task to be executed on more than one processor at a given time instant.
Resumo:
Replication is a proven concept for increasing the availability of distributed systems. However, actively replicating every software component in distributed embedded systems may not be a feasible approach. Not only the available resources are often limited, but also the imposed overhead could significantly degrade the system’s performance. This paper proposes heuristics to dynamically determine which components to replicate based on their significance to the system as a whole, its consequent number of passive replicas, and where to place those replicas in the network. The activation of passive replicas is coordinated through a fast convergence protocol that reduces the complexity of the needed interactions among nodes until a new collective global service solution is determined.
Resumo:
Distributed real-time systems, such as factory automation systems, require that computer nodes communicate with a known and low bound on the communication delay. This can be achieved with traditional time division multiple access (TDMA). But improved flexibility and simpler upgrades are possible through the use of TDMA with slot-skipping (TDMA/SS), meaning that a slot is skipped whenever it is not used and consequently the slot after the skipped slot starts earlier. We propose a schedulability analysis for TDMA/SS. We assume knowledge of all message streams in the system, and that each node schedules messages in its output queue according to deadline monotonic. Firstly, we present a non-exact (but fast) analysis and then, at the cost of computation time, we also present an algorithm that computes exact queuing times.
Resumo:
The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.
Resumo:
The objective of every wind energy producer is to reduce operational costs associated to the production as a way to increase profits. One other issue that must be looked carefully is the equipment maintenance. Increase the availability of wind turbines by reducing the downtime associated to failures is a good strategy to achieve the main goal of increase profits. As a way to help in the definition of the best maintenance strategies, condition monitoring systems (CMS) have an important role to play. Informatics tools to make the condition monitoring of the wind turbines were developed and are now being installed as a way to help producers reducing the operational costs. There are a lot of developed systems to do the monitoring of a wind turbine or the whole wind park, in this paper will be made an overview of the most important systems.