815 resultados para Database course
Resumo:
Soil moisture content, theta, of a bare and vegetated UK gravelly sandy loam soil (in situ and repacked in small lysimeters) was measured using various dielectric instruments (single-sensor ThetaProbes, multi-sensor Profile Probes, and Aquaflex Sensors), at depths ranging between 0.03 and I m, during the summers of 2001 (in situ soil) and 2002 (mini-lysimeters). Half-hourly values of evaporation, E, were calculated from diurnal changes in total soil profile water content, using the soil water balance equation. For the bare soil field, Profile Probes and ML2x ThetaProbes indicated a diurnal course of theta that did not concur with typical soil physical observations: surface layer soil moisture content increased from early morning until about midday, after which theta declined, generally until the early evening. The unexpected course of theta was positively correlated to soil temperature, T-s, also at deeper depths. Aquaflex and ML1 ThetaProbe (older models) outputs, however, reflected common observations: 0 increased slightly during the night (capillary rise) and decreased from the morning until late afternoon (as a result of evaporation). For the vegetated plot, the spurious diurnal theta fluctuations were less obvious, because canopy shading resulted in lower amplitudes of T-s. The unrealistic theta profiles measured for the bare and vegetated field sites caused diurnal estimates of E to attain downward daytime and upward night-time values. In the mini-lysimeters, at medium to high moisture contents, theta values measured by (ML2x) ThetaProbes followed a relatively realistic course, and predictions of E from diurnal changes in vertically integrated theta generally compared well with lysimeter estimates of E. However, time courses of theta and E became comparable to those observed for the field plots when the soil in the lysimeters reached relatively low values of theta. Attempts to correct measured theta for fluctuations in T, revealed that no generally applicable formula could be derived. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Our ability to identify, acquire, store, enquire on and analyse data is increasing as never before, especially in the GIS field. Technologies are becoming available to manage a wider variety of data and to make intelligent inferences on that data. The mainstream arrival of large-scale database engines is not far away. The experience of using the first such products tells us that they will radically change data management in the GIS field.
Resumo:
The EP2025 EDS project develops a highly parallel information server that supports established high-value interfaces. We describe the motivation for the project, the architecture of the system, and the design and application of its database and language subsystems. The Elipsys logic programming language, its advanced applications, EDS Lisp, and the Metal machine translation system are examined.
Resumo:
The hazards associated with high voltage three phase inverters and the rotating shafts of large electrical machines have resulted in most of the engineering courses covering these topics to be predominantly theoretical. This paper describes a set of purpose built, low voltage and low cost teaching equipment which allows the "hands on" instruction of three phase inverters and rotating machines. By using low voltages, the student can experiment freely with the motors and inverter and can access all of the current and voltage waveforms, which until now could only be studied in text books or observed as part of laboratory demonstrations. Both the motor and the inverter designs are optimized for teaching purposes cost around $25 and can be made with minimal effort.
Resumo:
The hazards associated with high-voltage three-phase inverters and high-powered large electrical machines have resulted in most of the engineering courses covering three-phase machines and drives theoretically. This paper describes a set of purpose-built, low-voltage, and low-cost teaching equipment that allows the hands-on instruction of three-phase inverters and rotating machines. The motivation for moving towards a system running at low voltages is that the students can safely experiment freely with the motors and inverter. The students can also access all of the current and voltage waveforms, which until now could only be studied in textbooks or observed as part of laboratory demonstrations. Both the motor and the inverter designs are for teaching purposes and require minimal effort and cost