773 resultados para Data transmission systems.
Resumo:
A mathematical model for Banana Xanthomonas Wilt (BXW) spread by insect is presented. The model incorporates inflorescence infection and vertical transmission from the mother corm to attached suckers, but not tool-based transmission by humans. Expressions for the basic reproduction number R0 are obtained and it is verified that disease persists, at a unique endemic level, when R0 > 1. From sensitivity analysis, inflorescence infection rate and roguing rate were the parameters with most influence on disease persistence and equilibrium level. Vertical transmission parameters had less effect on persistence threshold values. Parameters were approximately estimated from field data. The model indicates that single stem removal is a feasible approach to eradication if spread is mainly via inflorescence infection. This requires continuous surveillance and debudding such that a 50% reduction in inflorescence infection and 2–3 weeks interval of surveillance would eventually lead to full recovery of banana plantations and hence improved production.
Resumo:
The deterpenation of bergamot essential oil can be performed by liquid liquid extraction using hydrous ethanol as the solvent. A ternary mixture composed of 1-methyl-4-prop-1-en-2-yl-cydohexene (limonene), 3,7-dimethylocta-1,6-dien-3-yl-acetate (linalyl acetate), and 3,7-dimethylocta-1,6-dien-3-ol (linalool), three major compounds commonly found in bergamot oil, was used to simulate this essential oil. Liquid liquid equilibrium data were experimentally determined for systems containing essential oil compounds, ethanol, and water at 298.2 K and are reported in this paper. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were lower than 0.0062 in all systems, indicating the good descriptive quality of the molecular models. To verify the effect of the water mass fraction in the solvent and the linalool mass fraction in the terpene phase on the distribution coefficients of the essential oil compounds, nonlinear regression analyses were performed, obtaining mathematical models with correlation coefficient values higher than 0.99. The results show that as the water content in the solvent phase increased, the kappa value decreased, regardless of the type of compound studied. Conversely, as the linalool content increased, the distribution coefficients of hydrocarbon terpene and ester also increased. However, the linalool distribution coefficient values were negatively affected when the terpene alcohol content increased in the terpene phase.
Resumo:
Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.
Resumo:
In the last decade mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. It is expected that this tendency will continue to increase with the convergence of fixed Internet wired networks with mobile ones and with the evolution to the full IP architecture paradigm. Therefore mobile wireless communications will be of paramount importance on the development of the information society of the near future. In particular a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation. 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigm). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications to be available in the near future. The approach followed in the design and implementation of the mobile wireless networks of current generation (2G and 3G) has been the stratification of the architecture into a communication protocol model composed by a set of layers, in which each one encompasses some set of functionalities. In such protocol layered model, communications is only allowed between adjacent layers and through specific interface service points. This modular concept eases the implementation of new functionalities as the behaviour of each layer in the protocol stack is not affected by the others. However, the fact that lower layers in the protocol stack model do not utilize information available from upper layers, and vice versa, downgrades the performance achieved. This is particularly relevant if multiple antenna systems, in a MIMO (Multiple Input Multiple Output) configuration, are implemented. MIMO schemes introduce another degree of freedom for radio resource allocation: the space domain. Contrary to the time and frequency domains, radio resources mapped into the spatial domain cannot be assumed as completely orthogonal, due to the amount of interference resulting from users transmitting in the same frequency sub-channel and/or time slots but in different spatial beams. Therefore, the availability of information regarding the state of radio resources, from lower to upper layers, is of fundamental importance in the prosecution of the levels of QoS expected from those multimedia applications. In order to match applications requirements and the constraints of the mobile radio channel, in the last few years researches have proposed a new paradigm for the layered architecture for communications: the cross-layer design framework. In a general way, the cross-layer design paradigm refers to a protocol design in which the dependence between protocol layers is actively exploited, by breaking out the stringent rules which restrict the communication only between adjacent layers in the original reference model, and allowing direct interaction among different layers of the stack. An efficient management of the set of available radio resources demand for the implementation of efficient and low complexity packet schedulers which prioritize user’s transmissions according to inputs provided from lower as well as upper layers in the protocol stack, fully compliant with the cross-layer design paradigm. Specifically, efficiently designed packet schedulers for 4G networks should result in the maximization of the capacity available, through the consideration of the limitations imposed by the mobile radio channel and comply with the set of QoS requirements from the application layer. IEEE 802.16e standard, also named as Mobile WiMAX, seems to comply with the specifications of 4G mobile networks. The scalable architecture, low cost implementation and high data throughput, enable efficient data multiplexing and low data latency, which are attributes essential to enable broadband data services. Also, the connection oriented approach of Its medium access layer is fully compliant with the quality of service demands from such applications. Therefore, Mobile WiMAX seems to be a promising 4G mobile wireless networks candidate. In this thesis it is proposed the investigation, design and implementation of packet scheduling algorithms for the efficient management of the set of available radio resources, in time, frequency and spatial domains of the Mobile WiMAX networks. The proposed algorithms combine input metrics from physical layer and QoS requirements from upper layers, according to the crosslayer design paradigm. Proposed schedulers are evaluated by means of system level simulations, conducted in a system level simulation platform implementing the physical and medium access control layers of the IEEE802.16e standard.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.
Resumo:
Reactive-optimisation procedures are responsible for the minimisation of online power losses in interconnected systems. These procedures are performed separately at each control centre and involve external network representations. If total losses can be minimised by the implementation of calculated local control actions, the entire system benefits economically, but such control actions generally result in a certain degree of inaccuracy, owing to errors in the modelling of the external system. Since these errors are inevitable, they must at least be maintained within tolerable limits by external-modelling approaches. Care must be taken to avoid unrealistic loss minimisation, as the local-control actions adopted can lead the system to points of operation which will be less economical for the interconnected system as a whole. The evaluation of the economic impact of the external modelling during reactive-optimisation procedures in interconnected systems, in terms of both the amount of losses and constraint violations, becomes important in this context. In the paper, an analytical approach is proposed for such an evaluation. Case studies using data from the Brazilian South-Southeast system (810 buses) have been carried out to compare two different external-modelling approaches, both derived from the equivalent-optimal-power-flow (EOPF) model. Results obtained show that, depending on the external-model representation adopted, the loss representation can be flawed. Results also suggest some modelling features that should be adopted in the EOPF model to enhance the economy of the overall system.
Resumo:
In the present study, allele frequency distributions for the 15 STR loci included in the PowerPlex® 16 Systems (Promega) were obtained from a sample of 55 unrelated individuals living in Araraquara region (SP, Brazil). The frequency of each allele for each locus tested, the exact test and the forensic and paternity parameters were calculated using POWERSTATS ver. 1.2 (Promega) and GENEPOP ver. 3.2 software. All loci are in the Hardy-Weinberg equilibrium and they reached a combined power discrimination of 0.999999999999999973 and combined power exclusion of 0.99999987, showing to be a powerful tool for paternity testing and individual identification in the population analyzed. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.
Resumo:
This work presents a methodological proposal for acquisition of biometric data through telemetry basing its development on a research-action and a case study. Nowadays, the qualified professionals of physical evaluation have to use specific devices to obtain biometric signals and data. These devices in the most of the time are high cost and difficult to use and handling. Therefore, the methodological proposal was elaborate in order to develop, conceptually, a bio telemetric device which could acquire the desirable biometric signals: oxymetry, biometrics, corporal temperature and pedometry which are essential for the area of physical evaluation. It was researched the existent biometrics sensors, the possible ways for the remote transmission of signals and the computer systems available so that the acquisition of data could be possible. This methodological proposal of remote acquisition of biometrical signals is structured in four modules: Acquisitor of biometrics data; Converser and transmitter of biometric signals; Receiver and Processor of biometrics signals and Generator of Interpretative Graphs. The modules aim the obtention of interpretative graphics of human biometric signals. In order to validate this proposal a functional prototype was developed and it is presented in the development of this work.
Resumo:
Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.
Resumo:
This paper presents an Advanced Traveler Information System (ATIS) developed on Android platform, which is open source and free. The developed application has as its main objective the free use of a Vehicle-to- Infrastructure (V2I) communication through the wireless network access points available in urban centers. In addition to providing the necessary information for an Intelligent Transportation System (ITS) to a central server, the application also receives the traffic data close to the vehicle. Once obtained this traffic information, the application displays them to the driver in a clear and efficient way, allowing the user to make decisions about his route in real time. The application was tested in a real environment and the results are presented in the article. In conclusion we present the benefits of this application. © 2012 IEEE.
Resumo:
Includes bibliography
Resumo:
Modal analysis is widely approached in the classic theory of power systems modelling. This technique is also applied to model multiconductor transmission lines and their self and mutual electrical parameters. However, this methodology has some particularities and inaccuracies for specific applications, which are not clearly described in the technical literature. This study provides a brief review on modal decoupling applied in transmission line digital models and thereafter a novel and simplified computational routine is proposed to overcome the possible errors embedded by the modal decoupling in the simulation/ modelling computational algorithm. © The Institution of Engineering and Technology 2013.