922 resultados para Data replication processes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ~1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ~95% relative to chondritic Ir proportions. A similar depletion in Os (~90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ~1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ~65 Ma, the effective diffusivities are ~10**?13 cm**2/s, much smaller than that of soluble cations in pore waters (~10**?6 cm**2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios >/=1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ~25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment accretion and subduction at convergent margins play an important role in the nature of hazardous interplate seismicity (the seismogenic zone) and the subduction recycling of volatiles and continentally derived materials to the Earth's mantle. Identifying and quantifying sediment accretion, essential for a complete mass balance across the margin, can be difficult. Seismic images do not define the processes by which a prism was built, and cored sediments may show disturbed magnetostratigraphy and sparse biostratigraphy. This contribution reports the first use of cosmogenic 10Be depth profiles to define the origin and structural evolution of forearc sedimentary prisms. Biostratigraphy and 10Be model ages generally are in good agreement for sediments drilled at Deep Sea Drilling Project Site 434 in the Japan forearc, and support an origin by imbricate thrusting for the upper section. Forearc sediments from Ocean Drilling Program Site 1040 in Costa Rica lack good fossil or paleomagnetic age control above the decollement. Low and homogeneous 10Be concentrations show that the prism sediments are older than 3-4 Ma, and that the prism is either a paleoaccretionary prism or it formed largely from slump deposits of apron sediments. Low 10Be in Costa Rican lavas and the absence of frontal accretion imply deeper sediment underplating or subduction erosion.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bathymetry based on data recorded during MSM33 between 02.11.2013 -and 10.11.2013 in the Black Sea. The overarching goal of MSM33 was the investigation of the biology and biogeochemistry of the central Black Sea with a special consideration of the processes at pelagic redoxicline. The bathymetric focus laid upon the slope structure especially at the Archangelsky Ridge.