906 resultados para Data Interpretation, Statistical
Resumo:
We consider the development of statistical models for prediction of constituent concentration of riverine pollutants, which is a key step in load estimation from frequent flow rate data and less frequently collected concentration data. We consider how to capture the impacts of past flow patterns via the average discounted flow (ADF) which discounts the past flux based on the time lapsed - more recent fluxes are given more weight. However, the effectiveness of ADF depends critically on the choice of the discount factor which reflects the unknown environmental cumulating process of the concentration compounds. We propose to choose the discount factor by maximizing the adjusted R-2 values or the Nash-Sutcliffe model efficiency coefficient. The R2 values are also adjusted to take account of the number of parameters in the model fit. The resulting optimal discount factor can be interpreted as a measure of constituent exhaustion rate during flood events. To evaluate the performance of the proposed regression estimators, we examine two different sampling scenarios by resampling fortnightly and opportunistically from two real daily datasets, which come from two United States Geological Survey (USGS) gaging stations located in Des Plaines River and Illinois River basin. The generalized rating-curve approach produces biased estimates of the total sediment loads by -30% to 83%, whereas the new approaches produce relatively much lower biases, ranging from -24% to 35%. This substantial improvement in the estimates of the total load is due to the fact that predictability of concentration is greatly improved by the additional predictors.
Resumo:
Ordinal qualitative data are often collected for phenotypical measurements in plant pathology and other biological sciences. Statistical methods, such as t tests or analysis of variance, are usually used to analyze ordinal data when comparing two groups or multiple groups. However, the underlying assumptions such as normality and homogeneous variances are often violated for qualitative data. To this end, we investigated an alternative methodology, rank regression, for analyzing the ordinal data. The rank-based methods are essentially based on pairwise comparisons and, therefore, can deal with qualitative data naturally. They require neither normality assumption nor data transformation. Apart from robustness against outliers and high efficiency, the rank regression can also incorporate covariate effects in the same way as the ordinary regression. By reanalyzing a data set from a wheat Fusarium crown rot study, we illustrated the use of the rank regression methodology and demonstrated that the rank regression models appear to be more appropriate and sensible for analyzing nonnormal data and data with outliers.
Resumo:
We consider estimating the total load from frequent flow data but less frequent concentration data. There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates that minimizes the biases and makes use of informative predictive variables. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized rating-curve approach with additional predictors that capture unique features in the flow data, such as the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and the discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. Forming this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach for two rivers delivering to the Great Barrier Reef, Queensland, Australia. One is a data set from the Burdekin River, and consists of the total suspended sediment (TSS) and nitrogen oxide (NO(x)) and gauged flow for 1997. The other dataset is from the Tully River, for the period of July 2000 to June 2008. For NO(x) Burdekin, the new estimates are very similar to the ratio estimates even when there is no relationship between the concentration and the flow. However, for the Tully dataset, by incorporating the additional predictive variables namely the discounted flow and flow phases (rising or recessing), we substantially improved the model fit, and thus the certainty with which the load is estimated.
Resumo:
With growing population and fast urbanization in Australia, it is a challenging task to maintain our water quality. It is essential to develop an appropriate statistical methodology in analyzing water quality data in order to draw valid conclusions and hence provide useful advices in water management. This paper is to develop robust rank-based procedures for analyzing nonnormally distributed data collected over time at different sites. To take account of temporal correlations of the observations within sites, we consider the optimally combined estimating functions proposed by Wang and Zhu (Biometrika, 93:459-464, 2006) which leads to more efficient parameter estimation. Furthermore, we apply the induced smoothing method to reduce the computational burden. Smoothing leads to easy calculation of the parameter estimates and their variance-covariance matrix. Analysis of water quality data from Total Iron and Total Cyanophytes shows the differences between the traditional generalized linear mixed models and rank regression models. Our analysis also demonstrates the advantages of the rank regression models for analyzing nonnormal data.
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
In analysis of longitudinal data, the variance matrix of the parameter estimates is usually estimated by the 'sandwich' method, in which the variance for each subject is estimated by its residual products. We propose smooth bootstrap methods by perturbing the estimating functions to obtain 'bootstrapped' realizations of the parameter estimates for statistical inference. Our extensive simulation studies indicate that the variance estimators by our proposed methods can not only correct the bias of the sandwich estimator but also improve the confidence interval coverage. We applied the proposed method to a data set from a clinical trial of antibiotics for leprosy.
Resumo:
Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.
Resumo:
Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.
Resumo:
Troxel, Lipsitz, and Brennan (1997, Biometrics 53, 857-869) considered parameter estimation from survey data with nonignorable nonresponse and proposed weighted estimating equations to remove the biases in the complete-case analysis that ignores missing observations. This paper suggests two alternative modifications for unbiased estimation of regression parameters when a binary outcome is potentially observed at successive time points. The weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 90, 106-121) is also modified to obtain unbiased estimating functions. The suggested estimating functions are unbiased only when the missingness probability is correctly specified, and misspecification of the missingness model will result in biases in the estimates. Simulation studies are carried out to assess the performance of different methods when the covariate is binary or normal. For the simulation models used, the relative efficiency of the two new methods to the weighting methods is about 3.0 for the slope parameter and about 2.0 for the intercept parameter when the covariate is continuous and the missingness probability is correctly specified. All methods produce substantial biases in the estimates when the missingness model is misspecified or underspecified. Analysis of data from a medical survey illustrates the use and possible differences of these estimating functions.
Resumo:
Statistical analyses of health program participation seek to address a number of objectives compatible with the evaluation of demand for current resources. In this spirit, a spatial hierarchical model is developed for disentangling patterns in participation at the small area level, as a function of population-based demand and additional variation. For the former, a constrained gravity model is proposed to quantify factors associated with spatial choice and account for competition effects, for programs delivered by multiple clinics. The implications of gravity model misspecification within a mixed effects framework are also explored. The proposed model is applied to participation data from a no-fee mammography program in Brisbane, Australia. Attention is paid to the interpretation of various model outputs and their relevance for public health policy.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
In this paper, we tackle the problem of unsupervised domain adaptation for classification. In the unsupervised scenario where no labeled samples from the target domain are provided, a popular approach consists in transforming the data such that the source and target distributions be- come similar. To compare the two distributions, existing approaches make use of the Maximum Mean Discrepancy (MMD). However, this does not exploit the fact that prob- ability distributions lie on a Riemannian manifold. Here, we propose to make better use of the structure of this man- ifold and rely on the distance on the manifold to compare the source and target distributions. In this framework, we introduce a sample selection method and a subspace-based method for unsupervised domain adaptation, and show that both these manifold-based techniques outperform the cor- responding approaches based on the MMD. Furthermore, we show that our subspace-based approach yields state-of- the-art results on a standard object recognition benchmark.
Resumo:
Whilst the topic of soil salinity has received a substantive research effort over the years, the accurate measurement and interpretation of salinity tolerance data remain problematic. The tolerance of four perennial grass species (non-halophytes) to sodium chloride (NaCl) dominated salinity was determined in a free-flowing sand culture system. Although the salinity tolerance of non-halophytes is often represented by the threshold salinity model (bent-stick model), none of the species in the current study displayed any observable salinity threshold. Further, the observed yield decrease was not linear as suggested by the model. On re-examination of earlier datasets, we conclude that the threshold salinity model does not adequately describe the physiological processes limiting growth of non-halophytes in saline soils. Therefore, the use of the threshold salinity model is not recommended for non-halophytes, but rather, a model which more accurately reflects the physiological response observed in these saline soils, such as an exponential regression curve.