770 resultados para Dance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigación tiene como propósito analizar los lugares o papeles que el cuerpo ha ocupado en el teatro moderno y en el arte de acción para visibilizar los roles y los espacios asignados a lo corpóreo en dichas prácticas artísticas. Para ello se utiliza la reconstrucción escénica, una propuesta contemporánea adoptada por el teatro y la danza en la que el trabajo con materiales del pasado es una estrategia pensada para provocar rupturas en la relación original/copia y que para la investigación, en cambio, es vista como una metodología experimental que consiste en interpretar el cuerpo más allá de la observación, buscando encarnar y construir procesos de manera subjetiva. En el análisis del teatro moderno reconstruimos dos veces la primera escena de la obra teatral La gata sobre el tejado de zinc caliente de Tennessee Williams. Tomando como marco teórico los métodos actorales de Konstantin Stanislavski, Bertolt Brecht y la perspectiva crítica de los Estudios Culturales para deconstruir los roles del cuerpo en la modernidad teatral. En el caso del arte de acción, reconstruimos el performans de Melati Suyordamo Mantequilla Dance. Nos basamos en la eliminación de la técnica actoral y buscamos alternativas metodológicas utilizando como marco teórico los conceptos de Diana Taylor para quien el performance es visto de una manera amplia y que no se reduce solamente al espacio artístico, sino está anclado al acontecimiento. Su inicio y su final están en el hecho y no en descripciones o representaciones posteriores. De esta manera, la investigación reflexiona sobre los lugares del cuerpo en las prácticas artísticas del teatro moderno y el performans en el arte contemporáneo.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper gives an overview of the project Changing Coastlines: data assimilation for morphodynamic prediction and predictability. This project is investigating whether data assimilation could be used to improve coastal morphodynamic modeling. The concept of data assimilation is described, and the benefits that data assimilation could bring to coastal morphodynamic modeling are discussed. Application of data assimilation in a simple 1D morphodynamic model is presented. This shows that data assimilation can be used to improve the current state of the model bathymetry, and to tune the model parameter. We now intend to implement these ideas in a 2D morphodynamic model, for two study sites. The logistics of this are considered, including model design and implementation, and data requirement issues. We envisage that this work could provide a means for maintaining up-to-date information on coastal bathymetry, without the need for costly survey campaigns. This would be useful for a range of coastal management issues, including coastal flood forecasting.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data assimilation provides techniques for combining observations and prior model forecasts to create initial conditions for numerical weather prediction (NWP). The relative weighting assigned to each observation in the analysis is determined by its associated error. Remote sensing data usually has correlated errors, but the correlations are typically ignored in NWP. Here, we describe three approaches to the treatment of observation error correlations. For an idealized data set, the information content under each simplified assumption is compared with that under correct correlation specification. Treating the errors as uncorrelated results in a significant loss of information. However, retention of an approximated correlation gives clear benefits.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed an ensemble Kalman Filter (EnKF) to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2) and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO). The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12Ã8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a) the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths <0.3; and b) scene-dependent averaging kernels that relate the CO2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1) bias and unbiased errors, 2) alternative duty cycles, 3) measurement density and correlations, 4) the spatial resolution of estimated flux estimates, and 5) reducing the length of the lag window and the size of the ensemble. At the revision stage of this manuscript, the OCO instrument failed to reach its orbit after it was launched on 24 February 2009. The EnKF formulation presented here is also applicable to GOSAT measurements of CO2 and CH4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data assimilation is a sophisticated mathematical technique for combining observational data with model predictions to produce state and parameter estimates that most accurately approximate the current and future states of the true system. The technique is commonly used in atmospheric and oceanic modelling, combining empirical observations with model predictions to produce more accurate and well-calibrated forecasts. Here, we consider a novel application within a coastal environment and describe how the method can also be used to deliver improved estimates of uncertain morphodynamic model parameters. This is achieved using a technique known as state augmentation. Earlier applications of state augmentation have typically employed the 4D-Var, Kalman filter or ensemble Kalman filter assimilation schemes. Our new method is based on a computationally inexpensive 3D-Var scheme, where the specification of the error covariance matrices is crucial for success. A simple 1D model of bed-form propagation is used to demonstrate the method. The scheme is capable of recovering near-perfect parameter values and, therefore, improves the capability of our model to predict future bathymetry. Such positive results suggest the potential for application to more complex morphodynamic models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect returns from the UK's Doppler weather radars were collected in the summers of 2007 and 2008, to ascertain their usefulness in providing information about boundary layer winds. Such observations could be assimilated into numerical weather prediction models to improve forecasts of convective showers before precipitation begins. Significant numbers of insect returns were observed during daylight hours on a number of days through this period, when they were detected at up to 30 km range from the radars, and up to 2 km above sea level. The range of detectable insect returns was found to vary with time of year and temperature. There was also a very weak correlation with wind speed and direction. Use of a dual-polarized radar revealed that the insects did not orient themselves at random, but showed distinct evidence of common orientation on several days, sometimes at an angle to their direction of travel. Observation minus model background residuals of wind profiles showed greater bias and standard deviation than that of other wind measurement types, which may be due to the insects' headings/airspeeds and to imperfect data extraction. The method used here, similar to the Met Office's procedure for extracting precipitation returns, requires further development as clutter contamination remained one of the largest error contributors. Wind observations derived from the insect returns would then be useful for data assimilation applications.