873 resultados para DNA Sequence, Hidden Markov Model, Bayesian Model, Sensitive Analysis, Markov Chain Monte Carlo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Bayesian approach to estimation of the regression coefficients of a multinominal logit model with ordinal scale response categories is presented. A Monte Carlo method is used to construct the posterior distribution of the link function. The link function is treated as an arbitrary scalar function. Then the Gauss-Markov theorem is used to determine a function of the link which produces a random vector of coefficients. The posterior distribution of the random vector of coefficients is used to estimate the regression coefficients. The method described is referred to as a Bayesian generalized least square (BGLS) analysis. Two cases involving multinominal logit models are described. Case I involves a cumulative logit model and Case II involves a proportional-odds model. All inferences about the coefficients for both cases are described in terms of the posterior distribution of the regression coefficients. The results from the BGLS method are compared to maximum likelihood estimates of the regression coefficients. The BGLS method avoids the nonlinear problems encountered when estimating the regression coefficients of a generalized linear model. The method is not complex or computationally intensive. The BGLS method offers several advantages over Bayesian approaches. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wurst is a protein threading program with an emphasis on high quality sequence to structure alignments (http://www.zbh.uni-hamburg.de/wurst). Submitted sequences are aligned to each of about 3000 templates with a conventional dynamic programming algorithm, but using a score function with sophisticated structure and sequence terms. The structure terms are a log-odds probability of sequence to structure fragment compatibility, obtained from a Bayesian classification procedure. A simplex optimization was used to optimize the sequence-based terms for the goal of alignment and model quality and to balance the sequence and structural contributions against each other. Both sequence and structural terms operate with sequence profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been recognised for some time that a full code of amino acid-based recognition of DNA sequences would be useful. Several approaches, which utilise small DNA binding motifs called zinc fingers, are presently employed. None of the current approaches successfully combine a combinatorial approach to the elucidation of a code with a single stage high throughput screening assay. The work outlined here describes the development of a model system for the study of DNA protein interactions and the development of a high throughput assay for detection of such interactions. A zinc finger protein was designed which will bind with high affinity and specificity to a known DNA sequence. For future work it is possible to mutate the region of the zinc finger responsible for the specificity of binding, in order to observe the effect on the DNA / protein interactions. The zinc finger protein was initially synthesised as a His tagged product. It was not possible however to develop a high throughput assay using the His tagged zinc finger protein. The gene encoding the zinc finger protein was altered and the protein synthesised as a Glutathione S-Transferase (GST) fusion product. A successful assay was developed using the GST protein and Scintillation Proximity Assay technology (Amersham Pharmacia Biotech). The scintillation proximity assay is a dynamic assay that allows the DNA protein interactions to be studied in "real time". This assay not only provides a high throughput method of screening zinc finger proteins for potential ligands but also allows the effect of addition of reagents or competitor ligands to be monitored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hidden Markov state model has been applied to classical molecular dynamics simulated small peptide in explicit water. The methodology allows increasing the time resolution of the model and describe the dynamics with the precision of 0.3 ps (comparing to 6 ps for the standard methodology). It also permits the investigation of the mechanisms of transitions between the conformational states of the peptide. The detailed description of one of such transitions for the studied molecule is presented. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study described in this paper developed a model of animal movement, which explicitly recognised each individual as the central unit of measure. The model was developed by learning from a real dataset that measured and calculated, for individual cows in a herd, their linear and angular positions and directional and angular speeds. Two learning algorithms were implemented: a Hidden Markov model (HMM) and a long-term prediction algorithm. It is shown that a HMM can be used to describe the animal's movement and state transition behaviour within several “stay” areas where cows remained for long periods. Model parameters were estimated for hidden behaviour states such as relocating, foraging and bedding. For cows’ movement between the “stay” areas a long-term prediction algorithm was implemented. By combining these two algorithms it was possible to develop a successful model, which achieved similar results to the animal behaviour data collected. This modelling methodology could easily be applied to interactions of other animal species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axon guidance by molecular gradients plays a crucial role in wiring up the nervous system. However, the mechanisms axons use to detect gradients are largely unknown. We first develop a Bayesian “ideal observer” analysis of gradient detection by axons, based on the hypothesis that a principal constraint on gradient detection is intrinsic receptor binding noise. Second, from this model, we derive an equation predicting how the degree of response of an axon to a gradient should vary with gradient steepness and absolute concentration. Third, we confirm this prediction quantitatively by performing the first systematic experimental analysis of how axonal response varies with both these quantities. These experiments demonstrate a degree of sensitivity much higher than previously reported for any chemotacting system. Together, these results reveal both the quantitative constraints that must be satisfied for effective axonal guidance and the computational principles that may be used by the underlying signal transduction pathways, and allow predictions for the degree of response of axons to gradients in a wide variety of in vivo and in vitro settings.