997 resultados para Crop livestoke system
Resumo:
A field experiment compared two rice (Oryza sativa L.) cropping systems: paddy or raised beds with continuous furrow irrigation; and trialled four cultivars: Starbonnet, Lemont, Amaroo and Ceysvoni, and one test line YRL39; that may vary in adaptation to growth on raised beds. The grain yield of rice ranged from 740 to 1250 g/m(2) and was slightly greater in paddy than on raised beds. Although there were early growth responses to fertilizer nitrogen on raised beds, the crop nitrogen content at maturity mostly exceeded 20 g/m(2) in both systems, so nitrogen was unlikely to have limited yield. Ceysvoni yielded best in both systems, a result of good post-anthesis growth and larger grain size, although its whole-grain mill-out percentage was poor relative to the other cultivars. Starbonnet and Lemont yielded poorly on raised beds, associated with too few tillers and too much leaf area. When grown on raised beds all cultivars experienced a delay in anthesis resulting in more tillers, leaf area and dry weight at anthesis, and probably a greater yield potential. The growth of rice after anthesis, however, was similar on raised beds and in paddy, so reductions in harvest index and grain size on raised beds were recorded. The data indicated that water supply was not a major limitation to rice growth on raised beds, but slower crop development was an issue that would affect the use of raised beds in a cropping system, especially in rice-growing areas where temperatures are too cool for optimal crop development. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Current serotyping methods classify Pasteurella multocida into five capsular serogroups (serogroups A, B, D, E, and F) and 16 somatic serotypes (serotypes 1 to 16). In the present study, we have developed a multiplex PCR assay as a rapid alternative to the conventional capsular serotyping system. The serogroup-specific primers used in this assay were designed following identification, sequence determination, and analysis of the capsular biosynthetic loci of each capsular serogroup. The entire capsular biosynthetic loci of P. multocida A:1 (X-73) and B:2 (M1404) have been cloned and sequenced previously (J. Y. Chung, Y. M. Zhang, and B. Adler, FEMS Microbiol. Lett. 166:289-296, 1998; J. D. Boyce, J. Y. Chung, and B. Adler, Vet. Microbiol. 72:121-134, 2000). Nucleotide sequence analysis of the biosynthetic region (region 2) from each of the remaining three serogroups, serogroups D, E, and F, identified serogroup-specific regions and gave an indication of the capsular polysaccharide composition. The multiplex capsular PCR assay was highly specific, and its results, with the exception of those for some serogroup F strains, correlated well with conventional serotyping results. Sequence analysis of the strains that gave conflicting results confirmed the validity of the multiplex PCR and indicated that these strains were in fact capsular serogroup A. The multiplex PCR will clarify the distinction between closely related serogroups A and F and constitutes a rapid assay for the definitive classification of P. multocida capsular types
Resumo:
Brushtail possums, Trichosurus vulpecula Kerr, were experimentally infected with Ross River (RR) or Barmah Forest (BF) virus by Aedes vigilax (Skuse) mosquitoes. Eight of 10 animals exposed to RR virus developed neutralizing antibody, and 3 possums developed high viremia for < 48 hr after infection, sufficient to infect recipient mosquitoes. Two of 10 animals exposed to BF virus developed neutralizing antibody. Both infected possums maintained detectable neutralizing antibody to BF for at least 45 days after infection (log neutralization index > 2.0 at 45 days). Eight possums did not develop neutralizing antibody to BF despite exposure to infected mosquitoes. These results suggest that T. vulpecula may potentially act as a reservoir species for RR in urban areas. However, T. vulpecula infected with BF do not develop viremia sufficient to infect mosquitoes and are unlikely to be important hosts for BF.
Resumo:
Traffic and tillage effects on runoff and crop performance on a heavy clay soil were investigated over a period of 4 years. Tillage treatments and the cropping program were representative of broadacre grain production practice in northern Australia, and a split-plot design used to isolate traffic effects. Treatments subject to zero, minimum, and stubble mulch tillage each comprised pairs of 90-m 2 plots, from which runoff was recorded. A 3-m-wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the total surface area of the other received a single annual wheeling treatment from a working 100-kW tractor. Rainfall/runoff hydrographs demonstrate that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still maintained in large and intense rainfall events on wet soil. Mean annual runoff from wheeled plots was 63 mm (44%) greater than that from controlled traffic plots, whereas runoff from stubble mulch tillage plots was 38 mm (24%) greater than that from zero tillage plots. Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from wheeled stubble mulch tilled plots, representing conventional cropping practice, was more than 100 mm greater than that from controlled traffic zero tilled plots, representing best practice. This increased infiltration was reflected in an increased yield of 16% compared with wheeled stubble mulch. Minimum tilled plots demonstrated a characteristic midway between that of zero and stubble mulch tillage. The results confirm that unnecessary energy dissipation in the soil during the traction process that normally accompanies tillage has a major negative effect on infiltration and crop productivity. Controlled traffic farming systems appear to be the only practicable solution to this problem.
Resumo:
FILTER is an innovative, CSIRO developed system for treating effluent using high rate land application and subsequent effluent recapture via a closely spaced, subsurface drainage network. We report on the summer performance of a FILTER system established in a subtropical environment on a relatively impermeable swelling clay soil underlain by a deep regional water table. Using secondary treated sewage effluent, the FILTER system produced effluent of tertiary nutrient standards (less than or equal to5 mg/L TN; less than or equal to1 mg/L TP), with salinity levels suitable for subsequent irrigation reuse (EC less than or equal to2.5 dS/m). Removal of faecal coliforms was considerably less effective. The hydraulic loading rate achieved was about two and a half times larger than conventional irrigation demand, but this was associated with high deep percolation losses (e 3 mm/day). Comparisons are made with the original FILTER system developed and tested by Jayawardane et al. in temperate Australia. Suggestions are made for modifications to, and further testing of FILTER in a subtropical environment.
Resumo:
The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The pancreas is a relative newcomer to the stable of tissues with an intrinsic angiotensin-generating system. The involvement of this system in pancreatic activity will be dependent on the angiotensin-generating paths present in the pancreas and their precise cellular location. Thus far, renin, angiotensin-converting enzyme (ACE), angiotensin II and AT1 and AT2 receptors have been found. These are components of the "classical" renin-angiotensin system. But there is uncertainty as to their location and site of action. Furthermore, it is not known which, if any, alternative enzymes to renin and ACE are present, which angiotensins in addition to angiotensin II are generated and whether or not there are receptors to angiotensin IV and angiotensin-(1-7). Future research should focus on these aspects in order to provide a mechanistic basis to pancreatic physiological functions and to pathological conditions of clinical relevance.
Resumo:
Penalizing line management for the occurrence of lost time injuries has in some cases had unintended negative consequences. These are discussed. An alternative system is suggested that penalizes line management for accidents where the combination of the probability of recurrence and the maximum reasonable consequences such a recurrence may have exceeds an agreed limit. A reward is given for prompt effective control of the risk to below the agreed risk limit. The reward is smaller than the penalty. High-risk accidents require independent investigation by a safety officer using analytical techniques. Two case examples are given to illustrate the system. Continuous safety improvement is driven by a planned reduction in the agreed risk limit over time and reward for proactive risk assessment and control.
Resumo:
Due to the socio-economic inhomogeneity of communities in developing countries, the selection of sanitation systems is a complex task. To assist planners and communities in assessing the suitability of alternatives, the decision support system SANEX™ was developed. SANEX™ evaluates alternatives in two steps. First, Conjunctive Elimination, based on 20 mainly technical criteria, is used to screen feasible alternatives. Subsequently, a model derived from Multiattribute Utility Technique (MAUT) uses technical, socio-cultural and institutional criteria to compare the remaining alternatives with regard to their implementability and sustainability. This paper presents the SANEX™ algorithm, examples of its application in practice, and results obtained from field testing.
Resumo:
Riparian vegetation can be an effective measure for preventing degradation of streambanks and riparian areas. However, riparian revegetation imposes large costs on landholders associated with tree establishment and removal of land from cropping, while providing benefits to downstream landholders, fishers, the local community and environmentalists. Appropriate policy instruments are required to promote sustainable and balanced use of riparian zones. This article analyses the capacity of existing legislation and other instruments to promote restoration of degraded riparian zones on private land. The role of legislation. economic instruments, community engagement and extension programs, in persuading landholders to revegetate riparian areas and improve riparian vegetation cover; is examined in the context ofa small degraded catchment in an intensive farming area in tropical north Queensland. It is found that while legislation and regulations can control undesirable modification of riparian areas, in general they are unable to make a useful contribution to restoration of these areas; incentives and assistance measures appear to offer greater potential.
Resumo:
Management are keen to maximize the life span of an information system because of the high cost, organizational disruption, and risk of failure associated with the re-development or replacement of an information system. This research investigates the effects that various factors have on an information system's life span by understanding how the factors affect an information system's stability. The research builds on a previously developed two-stage model of information system change whereby an information system is either in a stable state of evolution in which the information system's functionality is evolving, or in a state of revolution, in which the information system is being replaced because it is not providing the functionality expected by its users. A case study surveyed a number of systems within one organization. The aim was to test whether a relationship existed between the base value of the volatility index (a measure of the stability of an information system) and certain system characteristics. Data relating to some 3000 user change requests covering 40 systems over a 10-year period were obtained. The following factors were hypothesized to have significant associations with the base value of the volatility index: language level (generation of language of construction), system size, system age, and the timing of changes applied to a system. Significant associations were found in the hypothesized directions except that the timing of user changes was not associated with any change in the value of the volatility index. Copyright (C) 2002 John Wiley Sons, Ltd.