988 resultados para Correlated Responses
Resumo:
Mesoamerica, defined as the broad linguistic and cultural area from middle southern Mexico to Costa Rica, might have played a pivotal role during the colonization of theAmerican continent. It has been suggested that the Mesoamerican isthmus could have played an important role in severely restricting prehistorically gene flow between North and SouthAmerica. Although the Native American component has been already described in admixedMexican populations, few studies have been carried out in native Mexican populations. In thisstudy we present mitochondrial DNA (mtDNA) sequence data for the first hypervariable region (HVR-I) in 477 unrelated individuals belonging to eleven different native populations from Mexico. Almost all the Native Mexican mtDNAs could be classified into the four pan-Amerindian haplogroups (A2, B2, C1 and D1); only three of them could be allocated to the rare Native American lineage D4h3. Their haplogroup phylogenies are clearly star-like, as expected from relatively young populations that have experienced diverse episodes of genetic drift (e.g. extensive isolation, genetic drift and founder effects) and posterior population expansions. In agreement with this observation is the fact that Native Mexican populations show a high degree of heterogeneity in their patterns of haplogroup frequencies. HaplogroupX2a was absent in our samples, supporting previous observations where this clade was only detected in the American northernmost areas. The search for identical sequences in the American continent shows that, although Native Mexican populations seem to show a closer relationship to North American populations, they cannot be related to a single geographical region within the continent. Finally, we did not find significant population structure on the maternal lineages when considering the four main and distinct linguistic groups represented in our Mexican samples (Oto-Manguean, Uto-Aztecan, Tarascan, and Mayan), suggesting that genetic divergence predates linguistic diversification in Mexico.
Resumo:
Rationale: Cystic fibrosis (CF) is characterized by progressive pulmonary inflammation that is infection-triggered. Pseudomonas aeruginosa represents a risk factor for deterioration of lung function and reduced life expectancy. Objectives: To assess T-cell cytokine/chemokine production in clinically stable children with CF and evaluate the association between T-cell subtypes and susceptibility for infection with P. aeruginosa. Methods: T-cell cytokine/chemokine profiles were measured in bronchoalveolar lavage fluid (BALF) from children with CF (n = 57; 6.1 ± 5.9 yr) and non-CF control subjects (n = 18; 5.9 ± 4.3 yr). Memory responses to Aspergillus fumigatus and P. aeruginosa were monitored. High-resolution computed tomography-based Helbich score was assessed. In a prospective observational trial the association between BALF cytokine/chemokine profiles and subsequent infection with P. aeruginosa was studied. Measurements and Main Results: Th1- (INF-γ), Th2- (IL-5, IL-13), Th17- (IL-17A), and Th17-related cytokines (IL-1β, IL-6) were significantly up-regulated in airways of patients with CF. IL-17A, IL-13, and IL-5 were significantly higher in BALF of symptomatic as compared with clinically asymptomatic patients with CF. IL-17A and IL-5 correlated with the percentage of neutrophils in BALF (r = 0.41, P < 0.05 and r = 0.46, P < 0.05, respectively). Th17- (IL-17A, IL-6, IL-1β, IL-8) and Th2-associated cytokines and chemokines (IL-5, IL-13, TARC/CCL17), but not IFN-γ levels, significantly correlated with high-resolution computed tomography changes (Helbich score; P < 0.05). P. aeruginosa- and A. fumigatus-specific T cells from patients with CF displayed significantly higher IL-5 and IL-17A mRNA expression. IL-17A and TARC/CCL17 were significantly augmented in patients that developed P. aeruginosa infection within 24 months. Conclusions: We propose a role for Th17 and Th2 T cells in chronic inflammation in lungs of patients with CF. High concentrations of these cytokines/chemokines in CF airways precede infection with P. aeruginosa.
Resumo:
BACKGROUND: The stimulation of efferent renal sympathetic nerve activity induces sequential changes in renin secretion, sodium excretion, and renal hemodynamics that are proportional to the magnitude of the stimulation of sympathetic nerves. This study in men investigated the sequence of the changes in proximal and distal renal sodium handling, renal and systemic hemodynamics, as well as the hormonal profile occurring during a sustained activation of the sympathetic nervous system induced by various levels of lower body negative pressure (LBNP). METHODS: Ten healthy subjects were submitted to three levels of LBNP ranging between 0 and -22.5 mm Hg for one hour according to a triple crossover design, with a minimum of five days between each level of LBNP. Systemic and renal hemodynamics, renal water and sodium handling (using the endogenous lithium clearance technique), and the neurohormonal profile were measured before, during, and after LBNP. RESULTS: LBNP (0 to -22.5 mm Hg) induced an important hormonal response characterized by a significant stimulation of the sympathetic nervous system and gradual activations of the vasopressin and the renin-angiotensin systems. LBNP also gradually reduced water excretion and increased urinary osmolality. A significant decrease in sodium excretion was apparent only at -22.5 mm Hg. It was independent of any change in the glomerular filtration rate and was mediated essentially by an increased sodium reabsorption in the proximal tubule (a significant decrease in lithium clearance, P < 0.05). No significant change in renal hemodynamics was found at the tested levels of LBNP. As observed experimentally, there appeared to be a clear sequence of responses to LBNP, the neurohormonal response occurring before the changes in water and sodium excretion, these latter preceding any change in renal hemodynamics. CONCLUSIONS: These data show that the renal sodium retention developing during LBNP, and thus sympathetic nervous stimulation, is due mainly to an increase in sodium reabsorption by the proximal segments of the nephron. Our results in humans also confirm that, depending on its magnitude, LBNP leads to a step-by-step activation of neurohormonal, renal tubular, and renal hemodynamic responses.
Resumo:
SUMMARY : Detailed knowledge of the different components of the immune system is required for the development of new immunotherapeutic strategies. CD4 T lymphocytes represent a highly heterogeneous group of cells characterized by various profiles of cytokine production and effector vs. regulatory functions. They are central players in orchestrating adaptive immune responses: unbalances between the different subtypes can lead either to aggressive autoimmune disorders or can favour the uncontrolled growth of malignancies. In this study we focused on the characterization of human CD4 T cells in advanced stage melanoma patients as well as in patients affected by various forms of autoimmune inflammatory spondyloarthropathies. In melanoma patients we report that a population of FOXP3 CD4 T cells, known as regulatory T cells, is overrepresented in peripheral blood, and even more in tumor-infitrated lymph nodes as well as at tumor sites, as compared to healthy donors. In tumor-infiltrated lymph nodes, but not in normal lymph nodes or in peripheral blood, FOXP3 CD4 T cells feature a highly differentiated phenotype (CD45RA-CCR7+/-), which suggests for a recent encounter with their cognate antigen. FOXP3 CD4 T cells have been described to be an important component of the several known immune escape mechanisms. We demonstrated that FOXP3 CD4 T cells isolated from melanoma patients exert an in vitro suppressive action on autologous CD4 T cells, thus possibly inhibiting an efficient anti-tumor response. Next, we aimed to analyse CD4 T cells at antigen-specific level. In advanced stage melanoma patients, we identified for the first time, using pMHCII multimers, circulating CD4 T cells specific for the melanoma antigen Melan-A, presented by HLA-DQB1 *0602. Interestingly, in a cohort of melanoma patients enrolled in an immunotherapy trails consisting of injection of a Melan-A derived peptide, we did not observe signif cant variations in the ex vivo frequencies of Melan-A specific CD4 T cells, but important differences in the quality of the specific CD4 T cells. In fact, up to 50% of the ex vivo Melan-A/DQ6 specific CD4 T cells displayed a regulatory phenotype and were hypoproliferative before vaccination, while more effector, cytokine-secreting Melan-A/DQ6 specific CD4 T cells were observed after immunization. These observations suggest that peptide vaccination may favourably modify the balance between regulatory and effector tumor-specific CD4 T cells. Finally, we identified another subset of CD4 T cells as possible mediator of pathology in a group of human autoimmune spondyloarthropathies, namely Th17 cells. These cells were recently described to play a critical role in the pathogenesis of some marine models of autommunity. We document an elevated presence of circulating Th17 cells in two members of seronegative spondyloarthropathies, e.g. psoriatic arthritis and ankylosing spondylitis, while we do not observe increased frequencies of Th17 cells in peripheral blood of rheumatoid arthritic patients. In addition, Th17 cells with a more advanced differentiation state (CD45RA-CCR7-CD27-) and polyfunctionality (concomitant secretion of IL-17, IL-2 and TNFα) were observed exclusively in patients with seronegative spondylarthropathies. Together, our observations emphasize the importance of CD4 T cells in various diseases and suggest that immunotherapeutic approaches considering CD4 T cells as targets should be evaluated in the future.
Resumo:
Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.
Resumo:
Central amygdala (CeA) projections to hypothalamic and brain stem nuclei regulate the behavioral and physiological expression of fear, but it is unknown whether these different aspects of the fear response can be separately regulated by the CeA. We combined fluorescent retrograde tracing of CeA projections to nuclei that modulate fear-related freezing or cardiovascular responses with in vitro electrophysiological recordings and with in vivo monitoring of related behavioral and physiological parameters. CeA projections emerged from separate neuronal populations with different electrophysiological characteristics and different response properties to oxytocin. In vivo, oxytocin decreased freezing responses in fear-conditioned rats without affecting the cardiovascular response. Thus, neuropeptidergic signaling can modulate the CeA outputs through separate neuronal circuits and thereby individually steer the various aspects of the fear response.
Resumo:
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.
Resumo:
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.
Resumo:
The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.
Resumo:
EBV has been consistently associated with MS, but its signature in the CNS has rarely been examined. In this study, we assessed EBV-specific humoral and cellular immune responses in the cerebrospinal fluid (CSF) of patients with early MS, other inflammatory neurological diseases (OIND) and non-inflammatory neurological diseases (NIND). The neurotropic herpesvirus CMV served as a control. Virus-specific humoral immune responses were assessed in 123 consecutive patients and the intrathecal recruitment of virus-specific antibodies was expressed as antibody indexes. Cellular immune responses tested in the blood of 55/123 patients were positive in 46/55. The CD8(+) CTL responses of these 46 patients were assessed in the blood and CSF using a CFSE-based CTL assay. We found that viral capsid antigen and EBV-encoded nuclear antigen-1, but not CMV IgG antibody indexes, were increased in early MS as compared with OIND and NIND patients. There was also intrathecal enrichment in EBV-, but not CMV-specific, CD8(+) CTL in early MS patients. By contrast, OIND and NIND patients did not recruit EBV- nor CMV-specific CD8(+) CTL in the CSF. Our data, showing a high EBV-, but not CMV-specific intrathecal immune response, strengthen the association between EBV and MS, in particular at the onset of the disease.
Resumo:
Dendritic cells are unique in their capacity to process antigens and prime naive CD8(+) T cells. Contrary to most cells, which express the standard proteasomes, dendritic cells express immunoproteasomes constitutively. The melanoma-associated protein Melan-A(MART1) contains an HLA-A2-restricted peptide that is poorly processed by melanoma cells expressing immunoproteasomes in vitro. Here, we show that the expression of Melan-A in dendritic cells fails to elicit T-cell responses in vitro and in vivo because it is not processed by the proteasomes of dendritic cells. In contrast, dendritic cells lacking immunoproteasomes induce strong anti-Melan-A T-cell responses in vitro and in vivo. These results suggest that the inefficient processing of self-antigens, such as Melan-A, by the immunoproteasomes of professional antigen-presenting cells prevents the induction of antitumor T-cell responses in vivo.
Resumo:
Astrocytes are responsible for the majority of the clearance of extracellular glutamate released during neuronal activity. dl-threo-beta-benzyloxyaspartate (TBOA) is extensively used as inhibitor of glutamate transport activity, but suffers from relatively low affinity for the transporter. Here, we characterized the effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), a recently developed inhibitor of the glutamate transporter on mouse cortical astrocytes in primary culture. The glial Na(+)-glutamate transport system is very efficient and its activation by glutamate causes rapid intracellular Na(+) concentration (Na(+)(i)) changes that enable real time monitoring of transporter activity. Na(+)(i) was monitored by fluorescence microscopy in single astrocytes using the fluorescent Na(+)-sensitive probe sodium-binding benzofuran isophtalate. When applied alone, TFB-TBOA, at a concentration of 1 muM, caused small alterations of Na(+)(i). TFB-TBOA inhibited the Na(+)(i) response evoked by 200 muM glutamate in a concentration-dependent manner with IC(50) value of 43+/-9 nM, as measured on the amplitude of the Na(+)(i) response. The maximum inhibition of glutamate-evoked Na(+)(i) increase by TFB-TBOA was >80%, but was only partly reversible. The residual response persisted in the presence of the AMPA/kainate receptor antagonist CNQX. TFB-TBOA also efficiently inhibited Na(+)(i) elevations caused by the application of d-aspartate, a transporter substrate that does not activate non-NMDA ionotropic receptors. TFB-TBOA was found not to influence the membrane properties of cultured cortical neurons recorded in whole-cell patch clamp. Thus, TFB-TBOA, with its high potency and its apparent lack of neuronal effects, appears to be one of the most useful pharmacological tools available so far for studying glial glutamate transporters.
Resumo:
The pathophysiological role of an increase in circulating vasopressin in sustaining global and regional vasoconstriction in patients with congestive heart failure has not been established, particularly in patients with hyponatraemia. To assess this further, 20 patients with congestive heart failure refractory to digoxin and diuretics were studied before and 60 minutes after the intravenous injection (5 micrograms/kg) of the vascular antagonist of vasopressin [1(beta-mercapto-beta,beta-cyclopentamethylene-propionic acid), 2-(0-methyl) tyrosine] arginine vasopressin. Ten patients were hyponatraemic (plasma sodium less than 135 mmol/l) and 10 were normonatraemic. In both groups of patients the vascular vasopressin antagonist did not alter systemic or pulmonary artery pressures, right atrial pressure, pulmonary capillary wedge pressure, cardiac index, or vascular resistances. Furthermore, there was no change in skin and hepatic blood flow in either group after the injection of the vascular antagonist. Only one patient in the hyponatraemic group showed considerable haemodynamic improvement. He had severe congestive heart failure and a high concentration of plasma vasopressin (51 pmol/l). Plasma renin activity, vasopressin, or catecholamine concentrations were not significantly changed in response to the administration of the vasopressin antagonist in either the hyponatraemic or the normonatraemic groups. Patients with hyponatraemia, however, had higher baseline plasma catecholamine concentrations, heart rate, pulmonary pressure and resistance, and lower hepatic blood flow than patients without hyponatraemia. Plasma vasopressin and plasma renin activity were slightly, though not significantly, higher in the hyponatraemic group. Thus the role of vasopressin in sustaining regional or global vasoconstriction seems limited in patients with congestive heart failure whether or not concomitant hyponatraemia is present. Vasopressin significantly increases the vascular tone only in rare patients with severe congestive heart failure and considerably increased vasopressin concentrations. Patients with hyponatraemia do, however, have raised baseline catecholamine concentrations, heart rate, pulmonary arterial pressure and resistance, and decreased hepatic blood flow.
Resumo:
Barrels are discrete cytoarchitectonic neurons cluster located in the layer IV of the somatosensory¦cortex in mice brain. Each barrel is related to a specific whisker located on the mouse snout. The¦whisker-to-barrel pathway is a part of the somatosensory system that is intensively used to explore¦sensory activation induced plasticity in the cerebral cortex.¦Different recording methods exist to explore the cortical response induced by whisker deflection in¦the cortex of anesthetized mice. In this work, we used a method called the Single-Unit Analysis by¦which we recorded the extracellular electric signals of a single barrel neuron using a microelectrode.¦After recording the signal was processed by discriminators to isolate specific neuronal shape (action¦potentials).¦The objective of this thesis was to familiarize with the barrel cortex recording during whisker¦deflection and its theoretical background and to compare two different ways of discriminating and¦sorting cortical signal, the Waveform Window Discriminator (WWD) or the Spike Shape Discriminator (SSD).¦WWD is an electric module allowing the selection of specific electric signal shape. A trigger and a¦window potential level are set manually. During measurements, every time the electric signal passes¦through the two levels a dot is generated on time line. It was the method used in previous¦extracellular recording study in the Département de Biologie Cellulaire et de Morphologie (DBCM) in¦Lausanne.¦SSD is a function provided by the signal analysis software Spike2 (Cambridge Electronic Design). The¦neuronal signal is discriminated by a complex algorithm allowing the creation of specific templates.¦Each of these templates is supposed to correspond to a cell response profile. The templates are saved¦as a number of points (62 in this study) and are set for each new cortical location. During¦measurements, every time the cortical recorded signal corresponds to a defined number of templates¦points (60% in this study) a dot is generated on time line. The advantage of the SSD is that multiple¦templates can be used during a single stimulation, allowing a simultaneous recording of multiple¦signals.¦It exists different ways to represent data after discrimination and sorting. The most commonly used¦in the Single-Unit Analysis of the barrel cortex are the representation of the time between stimulation¦and the first cell response (the latency), the representation of the Response Magnitude (RM) after¦whisker deflection corrected for spontaneous activity and the representation of the time distribution¦of neuronal spikes on time axis after whisker stimulation (Peri-Stimulus Time Histogram, PSTH).¦The results show that the RMs and the latencies in layer IV were significantly different between the¦WWD and the SSD discriminated signal. The temporal distribution of the latencies shows that the¦different values were included between 6 and 60ms with no peak value for SSD while the WWD¦data were all gathered around a peak of 11ms (corresponding to previous studies). The scattered¦distribution of the latencies recorded with the SSD did not correspond to a cell response.¦The SSD appears to be a powerful tool for signal sorting but we do not succeed to use it for the¦Single-Unit Analysis extracellular recordings. Further recordings with different SSD templates settings¦and larger sample size may help to show the utility of this tool in Single-Unit Analysis studies.
Resumo:
Resource polymorphism refers to individuals from the same population foraging in alternative habitats or on alternative food. Food specialization can be associated with adaptations such as colour polymorphism, with pale and dark colours conferring differential camouflage in different habitats. Pale and dark-reddish pheomelanic Barn Owls (Tyto alba) forage on different prey species in closed and open habitats, respectively. We show here that darker-reddish owls have heavier stomach content when found dead, and their 5th secondary wing feather is more deeply anchored inside the integument. These correlations suggest that their feathers bend less when flying, and that darker-reddish Barn Owls are able sustain more intense flying than their paler conspecifics.