993 resultados para Cores
Resumo:
The Mesocena elliptica Ehr. zone in deep-sea sediments of the Pacific Ocean is characterized by a short vertical range at the base of the Pleistocene section. Depending on sedimentation rate this zone lies at various depths below the ocean bottom. M. elliptica is unknown in recent oceanic plankton. In fossil state known species indicate that sediments containing them are of Oligocene-Miocene age. New data obtained in early 1960's show that within a short interval, evidently in Early Pleistocene, M. elliptica was abundant in plankton, primarily in tropical regions. Correlation of paleomagnetic data with results of diatom analysis shows that the Mesocena elliptica zone always lies above the Pliocene-Pleistocene boundary, and that maximum contents of M. elliptica coincide with the Jaramillo event (0.85-0.95 million years ago).
Resumo:
The distribution of rainfall in tropical Africa is controlled by the African rainbelt**1, which oscillates on a seasonal basis. The rainbelt has varied on centennial to millennial timescales along with changes in Northern Hemisphere high-latitude climate**2, 3, 4, 5, the Atlantic meridional overturning circulation**6 and low-latitude insolation**7 over the past glacial-interglacial cycle. However, the overall dynamics of the African rainbelt remain poorly constrained and are not always consistent with a latitudinal migration**2, 4, 5, 6, as has been proposed for other regions**8, 9. Here we use terrestrially derived organic and sedimentary markers from marine sediment cores to reconstruct the distribution of vegetation, and hence rainfall, in tropical Africa during extreme climate states over the past 23,000 years. Our data indicate that rather than migrating latitudinally, the rainbelt contracted and expanded symmetrically in both hemispheres in response to changes in climate. During the Last Glacial Maximum and Heinrich Stadial 1, the rainbelt contracted relative to the late Holocene, which we attribute to a latitudinal compression of atmospheric circulation associated with lower global mean temperatures**10. Conversely, during the mid-Holocene climatic optimum, the rainbelt expanded across tropical Africa. In light of our findings, it is not clear whether the tropical rainbelt has migrated latitudinally on a global scale, as has been suggested**8,9.
Resumo:
We present a suite of new high-resolution records (0-135 ka) representing pulses of aeolian, fluvial, and biogenic sedimentation along the Senegalese continental margin. A multiproxy approach based on rock magnetic, element, and color data was applied on three cores enclosing the present-day northern limit of the ITCZ. A strong episodic aeolian contribution driven by stronger winds and dry conditions and characterized by high hematite and goethite input was revealed north of 13°N. These millennial-scale dust fluxes are synchronous with North Atlantic Heinrich stadials. Fluvial clay input driven by the West African monsoon predominates at 12°N and varies at Dansgaard-Oeschger time scales while marine productivity is strongly enhanced during the African humid periods and marine isotope stage 5. From latitudinal signal variations, we deduce that the last glacial ITCZ summer position was located between core positions at 12°26' and 13°40'N. Furthermore, this work also shows that submillennial periods of aridity over northwest Africa occurred more frequently and farther south than previously thought.
Resumo:
In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.
Resumo:
Magnetic properties of late Quaternary sediments on the SW Iberian Margin are dominated by bacterial magnetite, observed by transmission electron microscopy (TEM), with contributions from detrital titanomagnetite and hematite. Reactive hematite from eolian dust, together with low organic matter concentrations and the lack of sulfate reduction, lead to dissimilatory iron reduction and availability of Fe(II) for abundant magnetotactic bacteria. Magnetite grain-size proxies (kARM/k and ARM/IRM) and S-ratios (sensitive to hematite) vary on stadial/interstadial timescales, contain orbital power, and mimic planktic d18O. The detrital/biogenic magnetite ratio and hematite concentration are greater during stadials and glacial isotopic stages, reflecting increased detrital (magnetite) input during times of lowered sea level, coinciding with atmospheric conditions favoring hematitic dust supply. Magnetic susceptibility, on the other hand, has a very different response being sensitive to coarse detrital multidomain (MD) magnetite associated with ice-rafted debris (IRD). High susceptibility and/or magnetic grain size coarsening, mark Heinrich stadials (HS), particularly HS2, HS3, HS4, HS5, HS6 and HS7, as well as older Heinrich-like detrital layers, indicating the sensitivity of this region to fluctuations in the position of the polar front. Relative paleointensity (RPI) records have well-constrained age models based on planktic d18O correlation to ice-core chronologies, however, they differ from reference records (e.g. PISO) particularly in the vicinity of glacial maxima, mainly due to inefficient normalization of RPI records in intervals of enhanced detrital/eolian hematite input.
Resumo:
Low-temperature rock magnetic measurements have distinct diagnostic value. However, in most bulk marine sediments the concentration of ferrimagnetic and antiferromagnetic minerals is extremely low, so even sensitive instrumentation often responds to the paramagnetic contribution of the silicate matrix in the residual field of the magnetometer. Analysis of magnetic extracts is usually performed to solve the problems raised by low magnetic concentrations. Additionally magnetic extracts can be used for several other analyses, for example electron microscopy or X-ray diffraction. The magnetic extraction technique is generally sufficient for sediments dominated by magnetite. In this study however, we show that high-coercivity components are rather underrepresented in magnetic extracts of sediments with a more complex magnetic mineralogy. We test heavy liquid separation, using hydrophilic sodium polytungstenate solution Na6[H2W12O40], to demonstrate the efficiencies of both concentration techniques. Low-temperature cycling of zero-field-cooled, field-cooled and saturation isothermal remanent magnetization acquired at room temperature was performed on dry bulk sediments, magnetic extracts, and heavy liquid separates of clay-rich pelagic sediments originating from the Equatorial Atlantic. The results of the thermomagnetic measurements clarify that magnetic extraction favours components with high spontaneous magnetization, such as magnetite and titanomagnetite. The heavy liquid separation is unbiased with respect to high- and low-coercive minerals, thus it represents the entire magnetic assemblage.
Resumo:
In order to reconstruct hydrographic changes during glacial-interglacial cycles for a transequatorial transect we analyzed oxygen isotopes of Globigerinoides sacculifer (without sac-like chamber) and abundances of Globorotalia truncatulinoides (dextral) from FS Meteor cores GeoB 2204-2 (Brazilian continental slope) and GeoB 1523-1 (Ceara Rise). Delta d18O values of G. sacculifer between the two cores were calculated. Modern Delta d18O (G. sacculifer) is ~0.2 per mill between the two core positions, reflecting differences in sea surface salinity (SSS). Higher SSS at GeoB 1523-1 (Ceara Rise) is the result of increased precipitation in the region of the Intertropical Convergence Zone. During glacials the ?18O records from the two cores converge to the same absolute value, resulting in ??18O values of around 0 per mill. Maximum abundances of G. truncatulinoides (dex) correlate with minimum Delta d18O, suggesting a possible increase of SSS at GeoB 1523-1 during stages 2, 3, 4, and 6, which is related to a glacial weakening of the tropical Hadley Cell [Gates, 1976]. Variations in tropical sea surface temperatures are assumed to be low [Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP), 1981].
Resumo:
We present late Quaternary records of aragonite preservation determined for sediment cores recovered on the Brazilian Continental Slope (1790-2585 m water depth) where North Atlantic Deep Water (NADW) dominates at present. We have used various indirect dissolution proxies (carbonate content, aragonite/calcite contents, and sand percentages) as well as gastropodal abundances and fragmentation of Limacina inflata to determine the state of aragonite preservation. In addition, microscopic investigations of the dissolution susceptibility of three Limacina species yielded the Limacina Dissolution Index which correlates well with most of the other proxies. Excellent preservation of aragonite was found in the Holocene section, whereas aragonite dissolution gradually increases downcore. This general pattern is attributed to an overall increase in aragonite corrosiveness of pore waters. Overprinted on this early diagenetic trend are high-frequency fluctuations of aragonite preservation, which may be related to climatically induced variations of intermediate water masses.