971 resultados para Control-flow
Resumo:
Pharmaceuticals can exist in many solid forms, which can have different physical and chemical properties. These solid forms include polymorphs, solvates, amorphous, and hydrates. Particularly, hydration process can be quite common since pharmaceutical solids can be in contact with water during manufacturing process and can also be exposed to water during storage. In the present work, it is proved that NQR technique is capable of detecting different hydrated forms not only in the pure raw material but also in the final product (tablets), being in this way a useful technique for quality control. This technique was also used to study the dehydration process from pentahydrate to trihydrate.
Resumo:
A kinetic theory based Navier-Stokes solver has been implemented on a parallel supercomputer (Intel iPSC Touchstone Delta) to study the leeward flowfield of a blunt nosed delta wing at 30-deg incidence at hypersonic speeds (similar to the proposed HERMES aerospace plane). Computational results are presented for a series of grids for both inviscid and laminar viscous flows at Reynolds numbers of 225,000 and 2.25 million. In addition, comparisons are made between the present and two independent calculations of the some flows (by L. LeToullec and P. Guillen, and S. Menne) which were presented at the Workshop on Hypersonic Flows for Re-entry Problems, Antibes, France, 1991.
Resumo:
Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.
Resumo:
Simultaneous measurements of pulmonary blood flow (qPA), coeliacomesenteric blood flow (qCoA), dorsal aortic blood pressure (PDA), heart rate (fH) and branchial ventilation frequency (fv) were made in the Australian lungfish, /Neoceratodus forsteri, /during air breathing and aquatic hypoxia. The cholinergic and adrenergic influences on the cardiovascular system were investigated during normoxia using pharmacological agents, and the presence of catecholamines and serotonin in different tissues was investigated using histochemistry. Air breathing rarely occurred during normoxia but when it did, it was always associated with increased pulmonary blood flow. The pulmonary vasculature is influenced by both a cholinergic and adrenergic tonus whereas the coeliacomesenteric vasculature is influenced by a β-adrenergic vasodilator mechanism. No adrenergic nerve fibers could be demonstrated in /Neoceratodus /but catecholamine-containing endothelial cells were found in the atrium of the heart. In addition, serotonin-immunoreactive cells were demonstrated in the pulmonary epithelium. The most prominent response to aquatic hypoxia was an increase in gill breathing frequency followed by an increased number of air breaths together with increased pulmonary blood flow. It is clear from the present investigation that /Neoceratodus /is able to match cardiovascular performance to meet the changes in respiration during hypoxia.
Resumo:
Study Design. A multicenter, randomized controlled trial with unblinded treatment and blinded outcome assessment was conducted. The treatment period was 6 weeks with follow-up assessment after treatment, then at 3, 6, and 12 months. Objectives. To determine the effectiveness of manipulative therapy and a low-load exercise program for cervicogenic headache when used alone and in combination, as compared with a control group. Summary of Background Data. Headaches arising from cervical musculoskeletal disorders are common. Conservative therapies are recommended as the first treatment of choice. Evidence for the effectiveness of manipulative therapy is inconclusive and available only for the short term. There is no evidence for exercise, and no study has investigated the effect of combined therapies for cervicogenic headache. Methods. In this study, 200 participants who met the diagnostic criteria for cervicogenic headache were randomized into four groups: manipulative therapy group, exercise therapy group, combined therapy group, and a control group. The primary outcome was a change in headache frequency. Other outcomes included changes in headache intensity and duration, the Northwick Park Neck Pain Index, medication intake, and patient satisfaction. Physical outcomes included pain on neck movement, upper cervical joint tenderness, a craniocervical flexion muscle test, and a photographic measure of posture. Results. There were no differences in headache-related and demographic characteristics between the groups at baseline. The loss to follow-up evaluation was 3.5%. At the 12-month follow-up assessment, both manipulative therapy and specific exercise had significantly reduced headache frequency and intensity, and the neck pain and effects were maintained (P < 0.05 for all). The combined therapies was not significantly superior to either therapy alone, but 10% more patients gained relief with the combination. Effect sizes were at least moderate and clinically relevant. Conclusion. Manipulative therapy and exercise can reduce the symptoms of cervicogenic headache, and the effects are maintained.
Resumo:
In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow
Resumo:
This paper identifies research priorities in evaluating the ways in which "genomic medicine"-the use of genetic information to prevent and treat disease-may reduce tobacco-related harm by: (1) assisting more smokers to quit; (2) preventing non-smokers from beginning to smoke tobacco; and (3) reducing the harm caused by tobacco smoking. The method proposed to achieve the first aim is pharmacogenetics", the use of genetic information to optimise the selection of smoking-cessation programmes by screening smokers for polymorphisms that predict responses to different methods of smoking cessation. This method competes with the development of more effective forms of smoking cessation that involve vaccinating smokers against the effects of nicotine and using new pharmaceuticals (such as cannabinoid antagonists and nicotine agonists). The second and third aims are more speculative. They include: screening the population for genetic susceptibility to nicotine dependence and intervening (eg, by vaccinating children and adolescents against the effects of nicotine) to prevent smoking uptake, and screening the population for genetic susceptibility to tobacco-related diseases. A framework is described for future research on these policy options. This includes: epidemiological modelling and economic evaluation to specify the conditions under which these strategies are cost-effective; and social psychological research into the effect of providing genetic information on smokers' preparedness to quit, and the general views of the public on tobacco smoking.
Resumo:
Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach.
Resumo:
Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.
Resumo:
Endothelial dysfunction is an early key event of atherogenesis. Both fitness level and exercise intervention have been shown to positively influence endothelial function. In a cross-sectional study of 47 children, the relationship between habitual physical activity and flow-mediated dilation (FMD) of the brachial artery was explored. Habitual physical activity levels (PALs) were assessed using a validated stable isotope technique, and FMD of the brachial artery was measured via high-resolution ultrasound. The results showed that habitual physical activity significantly correlated with FMD (r=0.39, P=0.007), and remained the most influential variable on dilation in multivariate analysis. Although both fitness level and exercise intervention have previously been shown to positively influence FMD, this is the first time that a relationship with normal PALs has been investigated, especially, at such a young age. These data support the concept that physical activity exerts its protective effect on cardiovascular health via the endothelium and add further emphasis to the importance of physical activity in childhood.
Resumo:
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.
Resumo:
The Flow State Scale-2 (FSS-2) and Dispositional Flow Scale-2 (DFS-2) are presented as two self-report instruments designed to assess flow experiences in physical activity. Item modifications were made to the original versions of these scales in order to improve the measurement of some of the flow dimensions. Confirmatory factor analyses of an item identification and a cross-validation sample demonstrated a good fit of the new scales. There was support for both a 9-first-order factor model and a higher order model with a global flow factor. The item identification sample yielded mean item loadings on the first-order factor of .78 for the FSS-2 and .77 for the DFS-2. Reliability estimates ranged from .80 to .90 for the FSS-2, and .81 to .90 for the DFS-2. In the cross-validation sample, mean item loadings on the first-order factor were .80 for the FSS-2, and .73 for the DFS-2. Reliability estimates ranged between .80 to .92 for the FSS-2 and .78 to .86 for the DFS-2. The scales are presented as ways of assessing flow experienced within a particular event (FSS-2) or the frequency of flow experiences in chosen physical activity in general (DFS-2).