901 resultados para Conservation of forests and aquatic ecosystems
Resumo:
The ionic nature of ionic liquids (ILs) results in a unique combination of intrinsic properties that produces increasing interest in the research of these fluids as environmentally friendly "neoteric" solvents. One of the main research fields is their exploitation as solvents for liquid-liquid extractions, but although ILs cannot vaporize leading to air pollution, they present non-negligible miscibility with water that may be the cause of some environmental aquatic risks. It is thus important to know the mutual solubilities between ILs and water before their industrial applications. In this work, the mutual solubilities of hydrophobic yet hygroscopic imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ILs in combination with the anions bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, and tricyanomethane with water were measured between 288.15 and 318.15 K. The effect of the ILs structural combinations, as well as the influence of several factors, namely cation side alkyl chain length, the number of cation substitutions, the cation family, and the anion identity in these mutual solubilities are analyzed and discussed. The hydrophobicity of the anions increases in the order [C(CN)3] <[PF6] <[Tf2N] while the hydrophobicity of the cations increases from [Cnmim] <[Cnmpy] [Cnmpyr] <[Cnmpip] and with the alkyl chain length increase. From experimental measurements of the temperature dependence of ionic liquid solubilities in water, the thermodynamic molar functions of solution, such as Gibbs energy, enthalpy, and entropy at infinite dilution were determined, showing that the solubility of these ILs in water is entropically driven and that the anion solvation at the IL-rich phase controls their solubilities in water. The COSMO-RS, a predictive method based on unimolecular quantum chemistry calculations, was also evaluated for the description of the water-IL binary systems studied, where it showed to be capable of providing an acceptable qualitative agreement with the experimental data.
Resumo:
American lobsters (Homarus americanus H. Milne Edwards, 1837) are imported live to Europe and should according regulations be kept in land-based tanks until sold. In spite of the strict regulations aimed specifically at preventing the introduction of this species into the NE Atlantic, several specimens of H. americanus have been captured in the wild, especially in Oslofjord, Norway since 1999. One of the great concerns is interbreeding between the introduced American species and the local European lobster, H. gammarus (Linnaeus, 1758). For this reason an awareness campaign was launched in 2000 focusing on morphologically "unusual" lobsters caught in local waters. Morphological characters have been based on colour and sub-ventral spines on the rostrum. Two samples of H. americanus were used for comparisons, as well as samples of European lobster from Oslofjord collected in 1992. Previous genetic analyses (allozymes, mtDNA and microsatellite DNA) have demonstrated that the American lobster is distinct from its European counterpart, with several additional alleles at many loci in addition to different allelic frequency distribution of alleles of "shared" alleles. During the present study, thirteen microsatellite loci were tested in the initial screening, and the three most discriminating loci (Hgam98, Hgam197b and Hgam47b) were used in a detailed comparison between the two species. A total of 45 unusual lobsters were reported captured from Ålesund (west) to Oslofjord (southeast) from 2001 to 2005 and these were analysed for the three microsatellite loci. Nine specimens were identified as American lobsters. Comparisons between morphological and genetic characteristics revealed that morphological differences are not reliable in discrimination the two species, or to identify hybrids. Further, some loci display almost no overlapping in allele frequency distribution for the reference samples analysed, thus providing a reliable tool to identify hybrids.
Resumo:
Biotic interactions such as predation and competition can influence aquatic communities at small spatial scales, but they are expected to be overridden by environmental factors at large scales. The continuing threat to freshwater biodiversity of biological invasions indicates that biotic factors do, however, have important structuring roles. In Irish rivers, the native amphipod Gammarus duebeni celticus has become locally extinct, ostensibly through differential predation by the more aggressive and introduced G. pulex. This mechanism explains impacts of G. pulex at within-river spatial scales on native macroinvertebrate community diversity, including declines in ephemeropterans, plecopterans, dipterans and oligochaetes. To determine if these patterns are predictable at larger spatial scales, we assessed patterns in native macroinvertebrate communities across river sites of the Erne catchment in 1998 and 1999, in conjunction with the distribution of G. pulex and G. d. celticus. In both years, G. pulex dominated invaded sites, whereas G. d. celticus occurred at low abundance in uninvaded sites. In both years, invaded sites had lower diversity and fewer pollution sensitive invertebrate species than un-invaded sites. Community ordination in 1998 showed that invaded sites had higher conductivity, smaller substrate particle size and comprised a lower proportion of pollution sensitive taxa including Ephemeroptera and Plecoptera. In contrast, in 1999, conductivity was the only variable explaining site ordination along axis 1, but was unable to separate sites with respect to invasion status. A second explanatory axis separated sites with respect to invasion status, with invaded sites having fewer taxa, including lower abundance of ephemeropterans, dipterans and plecopterans. Laboratory experiments examined the potential role of differential predation between the two Gammarus species in explaining these taxon specific patterns in the field. Survival of the ephemeropterans, Ephemerella ignita and Ecdyonurus venosus and the isopod, Asellus aquaticus, was lower when interacting with G. pulex than with G. d. celticus. This study indicates that G. putex may alter invertebrate community structure at scales beyond those detected within individual rivers. However, effects may be influenced by gradients in physico-chemistry, which may be temporal or depend on catchment characteristics. Invasions by amphipods have increased globally, thus comprehensive assessments of their impacts and of other aquatic invaders, may only be apparent when studies are conducted at a range of spatio-temporal scales.
Resumo:
Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.
Resumo:
Morphological investigations identified 11 Ceramium Roth species, of the 18 previously reported from Brazil. Phylogenetic analyses of sequences of the chloroplast-encoded rbcL gene confirmed the presence of seven of these species. Three other species are reported from Brazil for the first time. Ceramium affine Setchell & Gardner and C. filicula Harvey ex Womersley were previously known only from the Pacific Ocean (Mexico and Australia, respectively). A new species, C. fujianum Barros-Barreto et Maggs sp. nov., is described here. Its general habit is similar to that of C. strictum sensu Harvey from Europe but it has one less periaxial cell than C. strictum; its cortical filament arrangement is closest to C. deslongchampsii Chauvin ex Duby, also from Europe, but whorled tetrasporangia partially covered by cortical cells differ strikingly from the naked protruding tetrasporangia of C. deslongchampsii. Ceramium species in which each periaxial cell cuts off transversely only a single basipetal cell formed a robust clade. The genus Ceramium as represented in Brazil is not monophyletic with respect to Centroceras Kutzing and Corallophila Weber-van Bosse; Ceramium nitens, which has axial cells completely covered by rounded cortical cells formed by acropetal and basipetal filaments, did not group with any Ceramium clade but was weakly allied to a species of Corallophila. All three Brazilian Centroceras sequences were attributed to a single species, C. clavulatum.
Resumo:
Nidoviruses (arteriviruses, coronaviruses, and roniviruses) are a phylogenetically compact but diverse group of positive-strand RNA viruses that includes important human and animal pathogens. Nidovirus RNA synthesis is mediated by a cytoplasmic membrane-associated replication/transcription complex that includes up to 16 viral nonstructural proteins (nsps), which carry common enzymatic activities, like the viral RNA polymerase, but also unusual and poorly understood RNA-processing functions. Of these, a conserved endoribonuclease (NendoU) is a major genetic marker that is unique to nidoviruses. NendoU activity was previously verified in vitro for the coronavirus nsp15, but not for any of its distantly related orthologs from other nidovirus lineages, like the arterivirus nsp11. Here, we show that the bacterially expressed nsp11 proteins of two arteriviruses, equine arteritis virus and porcine respiratory and reproductive syndrome virus, possess pyrimidine-specific endoribonuclease activity. RNA cleavage was independent of divalent cations in vitro and was greatly reduced by replacement of residues previously implicated in catalysis. Comparative characterization of the NendoU activity in arteriviruses and severe acute respiratory syndrome coronavirus revealed common and distinct features of their substrate requirements and reaction mechanism. Our data provide the first biochemical evidence of endoribonuclease activity associated with arterivirus nsp11 and support the conclusion that this remarkable RNA-processing enzyme, whose substrate in the infected cell remains to be identified, distinguishes nidoviruses from all other RNA viruses.
Resumo:
A basic operational objective of any environmental organisation is to raise awareness among the public on issues of environmental protection, through the dissemination of knowledge and experience to local communities, so that the conservation and ecologically sound management of natural resources can acquire a local dimension. This can be achieved either through interventions directed at the State, mainly in relation to its legislative function, or by encouraging citizens to change or improve their attitude regarding environmental matters. In order to ensure a successful outcome and the efficient functioning of any organisation, a feeling of mutual trust and understanding should exist between the latter and its various audiences, i.e. the State and society. A basic ingredient of this balance between the organisation, the broader public and the State is effective communication and activity planning. As a way of contributing to the exploration of this process, this paper describes the means of communication used by Greek environmental organisations, and presents, through a non-linear model, the differentiation amongst them, in conjunction with aspects of the profile of those running each organisation and other indicators, such as the years in operation and the membership figures in each sampled organisation. The paper concludes by arguing that the diversification of communication means is related to the head person's years as a member of the organisation and the extent of its total membership. Another important finding is that the more the involvement in activities within the organisation, the less differentiation we observe amongst the employed means of communication.
Resumo:
We assessed the extent to which an invader, Gammarus pulex (Crustacea: Amphipoda), has replaced a native, Gammarus duebeni celticus, over a 13-year period in a European river system and some of the abiotic and biotic factors that could account for this. Between 1988 and 2001, 56% of mixed-species sites had become invader-only sites, whereas no mixed sites had become native only again. The native dominated areas of higher dissolved oxygen and water quality, with the reciprocal true for the invader. Field transplant experiments revealed that native survivorship was lower in areas where it had been replaced than in areas where the invader does not yet occur. In invader-only areas, native survivorship was lower than that of the invader when kept separately and lowest when both species were kept together. We also observed predation of the native by the invader. Laboratory oxygen manipulation experiments revealed that at 30% saturation, the native's survivorship was two thirds that of the invader. We conclude that decreasing water quality favours replacement of the native by the invader.
Resumo:
Studies of invasion scenarios over long time periods are important to refine explanations and predictions of invasion success and impact. We used data from surveys in 1958 and 1999 of the macroinvertebrates of Lough Neagh, Northern Ireland, to assess changes in the distribution of native and introduced amphipods in relation to the wider assemblage. In 1958, the invader G. tigrinus dominated the shoreline fauna, with the native G. d. celticus present in very low numbers, whereas in 1999 the reverse was evident. In both surveys, G. tigrinus was the only amphipod present in the mid-Lough. G. tigrinus thus seems to have become established within L. Neagh, perhaps overshot and then senesced, with the native species re-establishing on the shoreline, with the invader mostly restricted to the deep mid-Lough. The non-amphipod macroinvertebrate assemblage was similar between the two surveys, in terms of Bray-Curtis community similarity, assemblage diversity, dominance and the taxa based ASPT water quality index. However, the mean density of macroinvertebrates (all taxa combined) was lower in 1999 compared to 1958, largely accounted for by a decline in oligochaete numbers. Since Gammarus species may be predators of other macroinvertebrates and influence their distribution and abundance, we investigated this trophic link in staged laboratory encounters. Both G. tigrinus and G. d. celticus preyed on isopods, alderflies, mayflies, chironomids and mysids, however, the native G. d. celticus had a significantly greater predatory impact on isopods and chironomids than did the invader G. tigrinus. While we cannot definitively ascribe cause and effect in the present scenario, we discuss how replacement of one amphipod species by another may have impacts on the wider macroinvertebrate assemblage.
Resumo:
To assess the increasing threats to aquatic ecosystems from invasive species, we need to elucidate the mechanisms of impacts of current and predicted future invaders. Dikerogammarus villosus, a Ponto-Caspian amphipod crustacean, is invading throughout Europe and predicted to invade the North American Great Lakes. European field studies show that populations of macroinvertebrates decline after D. villosus invasion. The mechanism of such impacts has not been addressed empirically; however, D. villosus is known to prey upon and replace other amphipods. Therefore, in this study, we used microcosm and mesocosm laboratory experiments, with both single and mixed prey species scenarios, to assess any predatory impact of D. villosus on a range of macro invertebrate taxa, trophic groups, and body sizes. Dikerogammarus villosus predatory behaviour included shredding of prey and infliction of
Resumo:
The efficacy of ‘sod removal’ as a fenland restoration technique was tested using an experimental approach at Montiaghs Moss Nature Reserve, Northern Ireland, from 2006 to 2008. The site suffered from rank growth of purple moor-grass Molinia caerulea which was out-competing herbaceous species. Soil was removed up to a depth of 15 cm completely denuding vegetation in the experimental plot exposing bare peat. By July 2007, 15.2% of sod-removal areas were revegetated; by October 2008 cover had risen to 64.6%. Of this cover, purple moor-grass accounted for only 9-11% compared to 78- 79% on control plots. Cover of other rank-forming grass species was also significantly reduced. Sod removal significantly increased the cover of species characteristic of fenlands including sedges Carex spp., rushes Juncus spp., marsh pennywort Hydrocotyle vulgaris and lesser spearwort Ranunculus flammula. It seems likely that sod removal, which lowered the surface of the peat, restored minerotrophic conditions and exposed the historical seed bank stimulating regeneration of some fenland specialists and pioneer species; this resulted in significantly higher species richness on sod removal plots than control plots two years after treatment. There was no demonstrable effect of sod removal on abundance of devil’s-bit scabious Succisa pratensis, the larval food plant of the Annex II listed marsh fritillary butterfly Euphydryas aurinia. We recommend that consideration should be given to artificially seeding devil’s-bit scabious soon after sod removal treatment to promote early recolonisation and to increase plant abundance on the site.
Resumo:
European hare Lepus europaeus populations have undergone recent declines but the species has successfully naturalised in many countries outside its native range. It was introduced to Ireland during the mid-late nineteenth century for field sport and is now well established in Northern Ireland. The native Irish hare Lepus timidus hibernicus is an endemic subspecies of mountain hare L. timidus and has attracted major conservation concern following a long-term population decline during the twentieth century and is one of the highest priority species for conservation action in Ireland. Little is known about the European hare in Ireland or whether it poses a significant threat to the native mountain hare subspecies by compromising its ecological security or genetic integrity. We review the invasion ecology of the European hare and examine evidence for interspecific competition with the mountain hare for habitat space and food resources, interspecific hybridisation, disease and parasite transmission and possible impacts of climate change. We also examine the impact that introduced hares can have on native non-lagomorph species. We conclude that the European hare is an emerging and significant threat to the conservation status of the native Irish hare. Invasive mammal species have been successfully eradicated from Ireland before and immediate action is often the only opportunity for cost-effective eradication. An urgent call is issued for further research whilst the need for a European hare invasive Species Action Plan (iSAP) and Eradication strategy are discussed.
Resumo:
The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.
Resumo:
Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300-1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed 'deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.