980 resultados para Condensed Matter - Mesoscale and Nanoscale Physics
Resumo:
We study the quantum dynamics of the emission of multimodal polarized light in light emitting devices (LED) due to spin polarized carriers injection. We present the equations for photon number and carrier numbers, and calculate the polarisation degree of the light generated by LED. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We consider the possibility that the electrons injected into organic field-effect transistors are strongly correlated. A single layer of acenes can be modeled by a Hubbard Hamiltonian similar to that used for the κ-(BEDT-TTF)2X family of organic superconductors. The injected electrons do not necessarily undergo a transition to a Mott insulator state as they would in bulk crystals when the system is half-filled. We calculate the fillings needed for obtaining insulating states in the framework of the slave-boson theory and in the limit of large Hubbard repulsion U. We also suggest that these Mott states are unstable above some critical interlayer coupling or long-range Coulomb interaction.
Resumo:
Y-Ba-Cu-O samples with additions of Y2O3 and CeO2 were quenched during seeded isothermal melt processing and examined by optical microscopy and scanning electron microscopy. Large YBa2Cu3O7-y (Y123) particles in the starting powder were found to form a distinct type of melt during heating, which was unaffected by the Y2O3 or CeO2 additives. This type of melt later formed regions with a low concentration of Y2BaCuO5 (Y211) particles in the Y123 matrix. The maximum growth rate of Y123 that could be sustained in the sample was found to be lower in the melt formed from large Y123 particles, and this may lead to growth accidents and subgrains in some samples.
Resumo:
Electrical conductivity versus dopant ionic radius studies in zirconia- and ceria-based, solid oxide fuel cell (SOFC) electrolyte systems have shown that oxygen-ion conductivity is highest when the host and dopant ions are similar in size [J. Am. Ceram. Soc. 48 (1965) 286; Solid State Ionics 37 (1989) 67; Solid State Ionics 5 (1981) 547]. Under these conditions, it is thought that the conduction paths within the crystal lattice become less distorted [Solid State Ionics 8 (1983) 201]. In this study, binary ZrO2-M2O3 unit cells were expanded, via the partial substitution of Ce+4 for Zr+4 into the lattice, in an attempt to identify new, ternary, zirconia/ceria-based electrolyte systems with enhanced electrical conductivity. The compositions Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Yb, Sc) were prepared using traditional solid state techniques. Bulk phase characterisation and precise lattice parameter measurements were performed with X-ray diffraction techniques. Four-probe DC conductivity measurements between 400 and 900 degreesC showed that the dopant-ion radius influenced electrical conductivity. The conductivity versus dopant-ion radius trends previously observed in zirconia-based, binary systems are clearly apparent in the ternary systems investigated in this study. The addition of ceria was found to have a negative influence on the electrical conductivity over the temperature range 400-900 degreesC. It is suggested that distortion of the oxygen-ion conduction path by the presence of the larger M+3 and Ce+4 species (relative to Zr+4) is the reason for the decreasing electrical conductivity as a function of increasing dopant size and ceria addition, respectively. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
l-(BETS)2FeCl4 undergoes transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe31 magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. We show how He can be extracted from the observed splitting of the Shubnikov–de Haas frequencies. We predict the field range for field-induced superconductivity in other materials.
Resumo:
Solid solution effects on the hardness and flow stress have been studied for zinc contents between 0.2 and 2.4 at% (0.5 and 6.9 wt%) in Mg. The alloys were grain refined with 0.6 wt% zirconium to ensure a similar grain size at all compositions. The hardness increases with the zinc content as Hv(10) (kg mm(-2)) = 9 Zn (at%) + 33. At low solute concentrations the (0.2%) proof strength does not change significantly with concentration. At concentrations above 0.7 at%, within the supersaturated solid solution region, the rate of solid solution hardening is high, following a c(2) rule, where c is the atom fraction of Zn. It is suggested that short-range order may account for most of the observed strengthening in concentrated Mg-Zn alloys.
Resumo:
A simple percolation theory-based method for determination of the pore network connectivity using liquid phase adsorption isotherm data combined with a density functional theory (DFT)-based pore size distribution is presented in this article. The liquid phase adsorption experiments have been performed using eight different esters as adsorbates and microporous-mesoporous activated carbons Filtrasorb-400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The density functional theory (DFT)-based pore size distributions of the carbons were obtained using DFT analysis of argon adsorption data. The mean micropore network coordination numbers, Z, of the carbons were determined based on DR characteristic plots and fitted saturation capacities using percolation theory. Based on this method, the critical molecular sizes of the model compounds used in this study were also obtained. The incorporation of percolation concepts in the prediction of multicomponent adsorption equilibria is also investigated, and found to improve the performance of the ideal adsorbed solution theory (IAST) model for the large molecules utilized in this study. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we present a model accounting for the adsorbate-adsorbate interaction in the adsorbed phase in the description of adsorption of pure vapors on carbonaceous materials. The details of the adsorbate-adsorbate interaction of a particular species are obtained from the analysis of its adsorption data on non-porous carbon black. The predictability of the model is tested against the adsorption isotherm data for benzene, toluene, n-pentane, n-hexane, carbon tetrachloride, methanol and ethanol on microporous activated carbon. It was found that the model prediction for non-polar adsorbates are satisfactory while it under-predicts for polar adsorbates, which is attributed to their additional interaction with functional groups. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The compound Zr0.75Ce0.08Nd0.17O1.92 was investigated as part of a much larger electrical conductivity/microstructure study of the systems ZrO2-CeO2-M2O3 (where M=Nd, Sm, ..., Yb) [Solid State Ionics (2002)]. Electrical conductivity measurements performed in air at 800 degreesC showed significant conductivity degradation over a period of 200 h. Investigation of the annealed and as-fired specimens by ATEM revealed the presence of an emerging, ordered pyrochlore-type phase within the Zr0.75Ce0.08Nd0.17O1.92 defect-fluorite solid solution at much lower dopant levels than observed previously for zirconia binary systems. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.
Resumo:
Low-temperature anneals (1200 degreesC for 40 h) of 8 mol% yttria-stabilised zirconia, prior to the samples being sintered at 1500 degreesC, had the effect of improving the ionic conductivity of the specimens. The presence Of SiO2 in the specimens was shown to be detrimental, however. Irrespective of the SiO2 content, this type of heat treatment also leads to improvements in conductivity. Extensive microstructural analysis provided indication of the mechanism of this phenomenon. This included selective formation of zircon, relief of sintering strain leading to the formation of coherent grain boundaries and segregation effects. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
A model describing coherent quantum tunnelling between two trapped Bose-Einstein condensates is discussed. It is not well known that the model admits an exact solution, obtained some time ago, with the energy spectrum derived through the algebraic Bethe ansatz. An asymptotic analysis of the Bethe ansatz equations leads us to explicit expressions for the energies of the ground and the first excited states in the limit of weak tunnelling and all energies for strong tunnelling. The results are used to extract the asymptotic limits of the quantum fluctuations of the boson number difference between the two Bose-Einstein condensates and to characterize the degree of coherence in the system.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.
Resumo:
We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.