945 resultados para Computer-Aided Engineering


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Attribute-based signature (ABS) enables users to sign messages over attributes without revealing any information other than the fact that they have attested to the messages. However, heavy computational cost is required during signing in existing work of ABS, which grows linearly with the size of the predicate formula. As a result, this presents a significant challenge for resource-constrained devices (such as mobile devices or RFID tags) to perform such heavy computations independently. Aiming at tackling the challenge above, we first propose and formalize a new paradigm called Outsourced ABS, i.e., OABS, in which the computational overhead at user side is greatly reduced through outsourcing intensive computations to an untrusted signing-cloud service provider (S-CSP). Furthermore, we apply this novel paradigm to existing ABS schemes to reduce the complexity. As a result, we present two concrete OABS schemes: i) in the first OABS scheme, the number of exponentiations involving in signing is reduced from O(d) to O(1) (nearly three), where d is the upper bound of threshold value defined in the predicate; ii) our second scheme is built on Herranz et al.'s construction with constant-size signatures. The number of exponentiations in signing is reduced from O(d2) to O(d) and the communication overhead is O(1). Security analysis demonstrates that both OABS schemes are secure in terms of the unforgeability and attribute-signer privacy definitions specified in the proposed security model. Finally, to allow for high efficiency and flexibility, we discuss extensions of OABS and show how to achieve accountability as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hidden patterns and contexts play an important part in intelligent pervasive systems. Most of the existing works have focused on simple forms of contexts derived directly from raw signals. High-level constructs and patterns have been largely neglected or remained under-explored in pervasive computing, mainly due to the growing complexity over time and the lack of efficient principal methods to extract them. Traditional parametric modeling approaches from machine learning find it difficult to discover new, unseen patterns and contexts arising from continuous growth of data streams due to its practice of training-then-prediction paradigm. In this work, we propose to apply Bayesian nonparametric models as a systematic and rigorous paradigm to continuously learn hidden patterns and contexts from raw social signals to provide basic building blocks for context-aware applications. Bayesian nonparametric models allow the model complexity to grow with data, fitting naturally to several problems encountered in pervasive computing. Under this framework, we use nonparametric prior distributions to model the data generative process, which helps towards learning the number of latent patterns automatically, adapting to changes in data and discovering never-seen-before patterns, contexts and activities. The proposed methods are agnostic to data types, however our work shall demonstrate to two types of signals: accelerometer activity data and Bluetooth proximal data. © 2014 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper contains findings based on administering a Likert-type mobile learning attitude survey to 261 university students from four nations, China, Lebanon, the UAE and the USA. Students were asked to provide attitudes and perceptions toward the use of mobile technologies in education. The results of the survey indicate that students in different regions of the world tend to agree that mobile learning could empower informal learning and could enhance teaching and learning. Lebanon students were most similar to those from the USA, while students from China were more similar to those from the UAE. Similarities and differences in results among nations and implications of these findings are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistics-based Internet traffic classification using machine learning techniques has attracted extensive research interest lately, because of the increasing ineffectiveness of traditional port-based and payload-based approaches. In particular, unsupervised learning, that is, traffic clustering, is very important in real-life applications, where labeled training data are difficult to obtain and new patterns keep emerging. Although previous studies have applied some classic clustering algorithms such as K-Means and EM for the task, the quality of resultant traffic clusters was far from satisfactory. In order to improve the accuracy of traffic clustering, we propose a constrained clustering scheme that makes decisions with consideration of some background information in addition to the observed traffic statistics. Specifically, we make use of equivalence set constraints indicating that particular sets of flows are using the same application layer protocols, which can be efficiently inferred from packet headers according to the background knowledge of TCP/IP networking. We model the observed data and constraints using Gaussian mixture density and adapt an approximate algorithm for the maximum likelihood estimation of model parameters. Moreover, we study the effects of unsupervised feature discretization on traffic clustering by using a fundamental binning method. A number of real-world Internet traffic traces have been used in our evaluation, and the results show that the proposed approach not only improves the quality of traffic clusters in terms of overall accuracy and per-class metrics, but also speeds up the convergence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a subdivision-based vector graphics for image representation and creation. The graphics representation is a subdivision surface defined by a triangular mesh augmented with color attribute at vertices and feature attribute at edges. Special cubic B-splines are proposed to describe curvilinear features of an image. New subdivision rules are then designed accordingly, which are applied to the mesh and the color attribute to define the spatial distribution and piecewise-smoothly varying colors of the image. A sharpness factor is introduced to control the color transition across the curvilinear edges. In addition, an automatic algorithm is developed to convert a raster image into such a vector graphics representation. The algorithm first detects the curvilinear features of the image, then constructs a triangulation based on the curvilinear edges and feature attributes, and finally iteratively optimizes the vertex color attributes and updates the triangulation. Compared with existing vector-based image representations, the proposed representation and algorithm have the following advantages in addition to the common merits (such as editability and scalability): 1) they allow flexible mesh topology and handle images or objects with complicated boundaries or features effectively; 2) they are able to faithfully reconstruct curvilinear features, especially in modeling subtle shading effects around feature curves; and 3) they offer a simple way for the user to create images in a freehand style. The effectiveness of the proposed method has been demonstrated in experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Restraining the spread of rumors in online social networks (OSNs) has long been an important but difficult problem to be addressed. Currently, there are mainly two types of methods 1) blocking rumors at the most influential users or community bridges, or 2) spreading truths to clarify the rumors. Each method claims the better performance among all the others according to their own considerations and environments. However, there must be one standing out of the rest. In this paper, we focus on this part of work. The difficulty is that there does not exist a universal standard to evaluate them. In order to address this problem, we carry out a series of empirical and theoretical analysis on the basis of the introduced mathematical model. Based on this mathematical platform, each method will be evaluated by using real OSN data.We have done three types of analysis in this work. First, we compare all the measures of locating important users. The results suggest that the degree and betweenness measures outperform all the others in the Facebook network. Second, we analyze the method of the truth clarification method, and find that this method has a long-term performance while the degree measure performs well only in the early stage. Third, in order to leverage these two methods, we further explore the strategy of different methods working together and their equivalence. Given a fixed budget in the real world, our analysis provides a potential solution to find out a better strategy by integrating both types of methods together. From both the academic and technical perspective, the work in this paper is an important step towards the most practical and optimal strategies of restraining rumors in OSNs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multicast is an important mechanism in modern wireless networks and has attracted significant efforts to improve its performance with different metrics including throughput, delay, energy efficiency, etc. Traditionally, an ideal loss-free channel model is widely used to facilitate routing protocol design. However, the quality of wireless links is affected or even jeopardized resulting in transmission failures by many factors like collisions, fading or the noise of environment. In this paper, we propose a reliable multicast protocol, called CodePipe, with energy-efficiency, high throughput and fairness in lossy wireless networks. Building upon opportunistic routing and random linear network coding, CodePipe can not only eliminate coordination between nodes, but also improve the multicast throughput significantly by exploiting both intra-batch and inter-batch coding opportunities. In particular, four key techniques, namely, LP-based opportunistic routing structure, opportunistic feeding, fast batch moving and inter-batch coding, are proposed to offer significant improvement in throughput, energy-efficiency and fairness.Moreover, we design an efficient online extension of CodePipe such that it can work in a dynamic network where nodes join and leave the network as time progresses. We evaluate CodePipe on ns2 simulator by comparing with other two state-of-art multicast protocols,MORE and Pacifier. Simulation results show that CodePipe significantly outperforms both of them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, wide attention has been drawn to the problem of containing worm propagation in smartphones. Unlike existing containment models for worm propagation, we study how to prevent worm propagation through the immunization of key nodes (e.g.; the top k influential nodes). Thus, we propose a novel containment model based on an influence maximization algorithm. In this model, we introduce a social relation graph to evaluate the influence of nodes and an election mechanism to find the most influential nodes. Finally, this model provides a targeted immunization strategy to disable worm propagation by immunizing the top k influential nodes. The experimental results show that the model not only finds the most influential top k nodes quickly, but also effectively restrains and controls worm propagation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cloud is becoming a dominant computing platform. Naturally, a question that arises is whether we can beat notorious DDoS attacks in a cloud environment. Researchers have demonstrated that the essential issue of DDoS attack and defense is resource competition between defenders and attackers. A cloud usually possesses profound resources and has full control and dynamic allocation capability of its resources. Therefore, cloud offers us the potential to overcome DDoS attacks. However, individual cloud hosted servers are still vulnerable to DDoS attacks if they still run in the traditional way. In this paper, we propose a dynamic resource allocation strategy to counter DDoS attacks against individual cloud customers. When a DDoS attack occurs, we employ the idle resources of the cloud to clone sufficient intrusion prevention servers for the victim in order to quickly filter out attack packets and guarantee the quality of the service for benign users simultaneously. We establish a mathematical model to approximate the needs of our resource investment based on queueing theory. Through careful system analysis and real-world data set experiments, we conclude that we can defeat DDoS attacks in a cloud environment. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article verifies the importance of popular users in OSNs. The results are counter-intuitive. First, for dissemination speed, a large amount of users can swiftly distribute information to the masses, but they are not highly-connected users. Second, for dissemination scale, many powerful forwarders in OSNs cannot be identified by the degree measure. Furthermore, to control dissemination, popular users cannot capture most bridges of social communities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At present, companies and standards organizations are enhancing Ethernet as the unified switch fabric for all of the TCP/IP traffic, the storage traffic and the high performance computing traffic in data centers. Backward congestion notification (BCN) is the basic mechanism for the end-to-end congestion management enhancement of Ethernet. To fulfill the special requirements of the unified switch fabric, i.e., losslessness and low transmission delay, BCN should hold the buffer occupancy around a target point tightly. Thus, the stability of the control loop and the buffer size are critical to BCN. Currently, the impacts of delay on the performance of BCN are unidentified. When the speed of Ethernet increases to 40 Gbps or 100 Gbps in the near future, the number of on-the-fly packets becomes the same order with the buffer size of switch. Accordingly, the impacts of delay will become significant. In this paper, we analyze BCN, paying special attention on the delay. We model the BCN system with a set of segmented delayed differential equations, and then deduce sufficient condition for the uniformly asymptotic stability of BCN. Subsequently, the bounds of buffer occupancy are estimated, which provides direct guidelines on setting buffer size. Finally, numerical analysis and experiments on the NetFPGA platform verify our theoretical analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an optimized fabrication method for developing a freestanding bridge for RF MEMS switches. In this method, the sacrificial layer is patterned and hard baked a 220°C for 3min, after filling the gap between the slots of the coplanar waveguide. Measurement results by AFM and SEM demonstrate that this technique significantly improves the planarity of the sacrificial layer, reducing the uneven surface to less than 20nm, and the homogeneity of the Aluminum thickness across the bridge. Moreover, a mixture of O2, Ar and CF4 was used and optimized for dry releasing of the bridge. A large membrane (200×100μm2) was released without any surface bending. Therefore, this method not only simplifies the fabrication process, but also improves the surface flatness and edge smoothness of the bridge. This fabrication method is fully compatible with standard silicon IC technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urban traffic as one of the most important challenges in modern city life needs practically effective and efficient solutions. Artificial intelligence methods have gained popularity for optimal traffic light control. In this paper, a review of most important works in the field of controlling traffic signal timing, in particular studies focusing on Q-learning, neural network, and fuzzy logic system are presented. As per existing literature, the intelligent methods show a higher performance compared to traditional controlling methods. However, a study that compares the performance of different learning methods is not published yet. In this paper, the aforementioned computational intelligence methods and a fixed-time method are implemented to set signals times and minimize total delays for an isolated intersection. These methods are developed and compared on a same platform. The intersection is treated as an intelligent agent that learns to propose an appropriate green time for each phase. The appropriate green time for all the intelligent controllers are estimated based on the received traffic information. A comprehensive comparison is made between the performance of Q-learning, neural network, and fuzzy logic system controller for two different scenarios. The three intelligent learning controllers present close performances with multiple replication orders in two scenarios. On average Q-learning has 66%, neural network 71%, and fuzzy logic has 74% higher performance compared to the fixed-time controller.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radio Frequency Identification (RFID) is a technology that has been deployed successfully for asset tracking within hospitals aimed at improving the quality of processes. In the Australian hospitals context however, adoption of this technology seem sporadic. This research reports on a long-term investigation to gain a deeper understanding of the socio-technical factors involved in the adoption of RFID in Australian hospitals. The research was conducted using interpretive multiple case methodology and results analyzed through the Actor-Network Theoretical (ANT) Lens. © 2013 Infonomics Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new portfolio risk measure that is the uncertainty of portfolio fuzzy return is introduced in this paper. Beyond the well-known Sharpe ratio (i.e., the reward-to-variability ratio) in modern portfolio theory, we initiate the so-called fuzzy Sharpe ratio in the fuzzy modeling context. In addition to the introduction of the new risk measure, we also put forward the reward-to-uncertainty ratio to assess the portfolio performance in fuzzy modeling. Corresponding to two approaches based on TM and TW fuzzy arithmetic, two portfolio optimization models are formulated in which the uncertainty of portfolio fuzzy returns is minimized, while the fuzzy Sharpe ratio is maximized. These models are solved by the fuzzy approach or by the genetic algorithm (GA). Solutions of the two proposed models are shown to be dominant in terms of portfolio return uncertainty compared with those of the conventional mean-variance optimization (MVO) model used prevalently in the financial literature. In terms of portfolio performance evaluated by the fuzzy Sharpe ratio and the reward-to-uncertainty ratio, the model using TW fuzzy arithmetic results in higher performance portfolios than those obtained by both the MVO and the fuzzy model, which employs TM fuzzy arithmetic. We also find that using the fuzzy approach for solving multiobjective problems appears to achieve more optimal solutions than using GA, although GA can offer a series of well-diversified portfolio solutions diagrammed in a Pareto frontier.