918 resultados para Computer simulation, Colloidal systems, Nucleation
Resumo:
4D simulation, building information modeling, virtual construction, computer simulation and virtual prototyping are emerging topics in the building construction industry. These techniques not only relate to the buildings themselves, but can also be applied to other forms of construction, including bridges. Since bridge construction is a complex process involving multiple types of plant and equipment, applying such virtual methods benefits the understanding of all parties in construction practice. This paper describes the relationship between temporary platforms, plant and equipment resources and a proposed-built model in the construction planning and use of Virtual Prototyping Simulation (VPS) to implement different construction scenarios in order to help planners identify an optimal construction plan. A case study demonstrates the use of VPS integrated with temporary platform design and plant and equipment-resource allocation to generate different construction scenarios.
Resumo:
The term gamification describes the addition of game elements to non-game contexts as a means to motivate and engage users. This study investigates the design, delivery and pilot evaluation of a gamified, smartphone application built to introduce new students to the campus, services and people at university during their first few weeks. This paper describes changes to the application made after an initial field study was undertaken and provides an evaluation of the impact of the redesign. Survey responses were collected from thirteen students and usage data was captured from 105 students. Results indicate three levels of user engagement and suggest that there is value in adding game elements to the experience in this way. A number of issues are identified and discussed based on game challenges, input, and facilitating game elements in an event setting such as university orientation.
Resumo:
Young drivers aged 17-24 years are at a risk of death and injury from road crashes primarily due to their age and inexperience on the road. Our research aims to investigate if a gamified mobile tracking and intervention tool can help to address this issue. We aim to build a smartphone application to support the current process of logging driving hours using a physical logbook and pen in Queensland. This provides an easier way to log driving hours than recording them in a logbook. In an attempt to engage Learners and encourage them to undertake more diverse driving practice we will explore how game elements can be integrated into the experience to motivate Learners. Previous research in other domains has shown that framing tasks as game-like can help engage and motivate users, however the addition of game elements to this space provides some interesting design challenges. This paper presents an overview of the research and presents these challenges for further discussion.
Resumo:
By the end of the 20th century the shift from professional recording studio to personal computer based recording systems was well established (Chadabe 1997) and musicians could increasingly see the benefits of value adding to the musical process by producing their own musical endeavours. At the Queensland University of Technology (QUT) where we were teaching, the need for a musicianship program that took account of these trends was becoming clear. The Sound Media Musicianship unit described in this chapter was developed to fill this need and ran from 1999 through 2010.
Resumo:
This paper proposes a self-tuning feedforward active noise control (ANC) system with online secondary path modeling. The step-size parameters of the controller and modeling filters have crucial rule on the system performance. In literature, these parameters are adjusted by trial-and-error. In other words, they are manually initialized before system starting, which require performing extensive experiments to ensure the convergence of the system. Hence there is no guarantee that the system could perform well under different situations. In the proposed method, the appropriate values for the step-sizes are obtained automatically. Computer simulation results indicate the effectiveness of the proposed method.
Resumo:
A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBD L are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM.
Resumo:
The addition of game design elements to non-game contexts has become known as gamification. Previous research has suggested that framing tedious and non-motivating tasks as game-like can make them enjoyable and motivating (e.g., de Oliveira, et al., 2010; Fujiki, et al., 2007; Chiu, et al., 2009). Smartphone applications lend themselves to being gamified as the underlying mobile technology has the ability to sense user activities and their surrounding environment. These sensed activities can be used to implement and enforce game-like rules based around many physical activities (e.g., exercise, travel, or eating). If researchers wish to investigate this area, they first need an existing gamified application to study. However if an appropriate application does not exist then the researcher may need to create their own gamified prototype to study. Unfortunately, there is little previous research that details or explains the design and integration of game elements to non-game mobile applications. This chapter explores this gap and shares a framework that was used to add videogame-like achievements to an orientation mobile application developed for new university students. The framework proved useful and initial results are discussed from two studies. However, further development of the framework is needed, including further consideration of what makes an effective gamified experience.
Resumo:
Driving can be dangerous, especially for young and inexperienced drivers. To help address the issue of inexperience a gamified logbook application was developed for Learner drivers. The application aims to encourage learners to undertake a wider range of practice, while also making it easier to record their mandatory practice sessions. This paper reports on the design of this application, focusing on the effect that adding gamification can have on the usability and user experience of the application and the importance of playability testing for gamified systems. Two versions of the application were developed, one with game elements and one without game elements. This paper presents findings from a study that compares the user experience of these two versions of the application with twelve recent Learner drivers. Overall, participants reported that the gamified version was more engaging and motivating than the non-gamified version, however neither versions were preferred over the other. We theorise that this may have occurred due to a number of usability issues that arose, including an increased difficulty in learnability due to the added game elements. These design issues are important to address in future gamified system designs.
Resumo:
With an increased emphasis on genotyping of single nucleotide polymorphisms (SNPs) in disease association studies, the genotyping platform of choice is constantly evolving. In addition, the development of more specific SNP assays and appropriate genotype validation applications is becoming increasingly critical to elucidate ambiguous genotypes. In this study, we have used SNP specific Locked Nucleic Acid (LNA) hybridization probes on a real-time PCR platform to genotype an association cohort and propose three criteria to address ambiguous genotypes. Based on the kinetic properties of PCR amplification, the three criteria address PCR amplification efficiency, the net fluorescent difference between maximal and minimal fluorescent signals and the beginning of the exponential growth phase of the reaction. Initially observed SNP allelic discrimination curves were confirmed by DNA sequencing (n = 50) and application of our three genotype criteria corroborated both sequencing and observed real-time PCR results. In addition, the tested Caucasian association cohort was in Hardy-Weinberg equilibrium and observed allele frequencies were very similar to two independently tested Caucasian association cohorts for the same tested SNP. We present here a novel approach to effectively determine ambiguous genotypes generated from a real-time PCR platform. Application of our three novel criteria provides an easy to use semi-automated genotype confirmation protocol.
Resumo:
The weather forecast centers in Australia and many other countries use a scale of cyclone intensity categories (categories 1-5) in their cyclone advisories, which are considered to be indicative of the cyclone damage potential. However, this scale is mainly based on maximum gust wind speeds. In a recent research project involving computer modeling of cyclonic wind forces on roof claddings and fatigue damage to claddings, it was found that cyclone damage not only depends on the maximum gust wind speed, but also on two other cyclone parameters, namely, the forward speed and radius to maximum winds. This paper describes the computer model used in predicting the cyclone damage to claddings and investigates the damage potential of a cyclone as a function of all the relevant cyclone parameters, based on which it attempts to refine the current scale of cyclone intensity categories.
Resumo:
This paper presents the response of pile foundations to ground shocks induced by surface explosion using fully coupled and non-linear dynamic computer simulation techniques together with different material models for the explosive, air, soil and pile. It uses the Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations. Blast wave propagation in soil, horizontal pile deformation and pile damage are presented to facilitate failure evaluation of piles. Effects of end restraint of pile head and the number and spacing of piles within a group on their blast response and potential failure are investigated. The techniques developed and applied in this paper and its findings provide valuable information on the blast response and failure evaluation of piles and will provide guidance in their future analysis and design.
Resumo:
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland–Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Resumo:
Single phase distributed energy resources (DERs) can cause voltage rise along distribution feeder and power imbalance among the phases. Usually transformer tap setting are used to mitigate voltage drop along feeders. However this can aggravate the voltage rise problem when DERs are connected. Moreover if the power generation in a phase is more than its load demand, the excess power in that phase will be fed back to the transmission network. In this paper, a unified power quality compensator (UPQC) has been utilized to alleviate the voltage quality excess power circulation problems. Through analysis and simulation results, the mode of operation of UPQC is highlighted. The proposals are validated through extensive digital computer simulation studies using PSCAD and MATLAB.
Resumo:
We present a technique for delegating a short lattice basis that has the advantage of keeping the lattice dimension unchanged upon delegation. Building on this result, we construct two new hierarchical identity-based encryption (HIBE) schemes, with and without random oracles. The resulting systems are very different from earlier lattice-based HIBEs and in some cases result in shorter ciphertexts and private keys. We prove security from classic lattice hardness assumptions.