913 resultados para Computer Vision and Robotics (Autonomous Systems)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El principal objetivo de esta tesis es dotar a los vehículos aéreos no tripulados (UAVs, por sus siglas en inglés) de una fuente de información adicional basada en visión. Esta fuente de información proviene de cámaras ubicadas a bordo de los vehículos o en el suelo. Con ella se busca que los UAVs realicen tareas de aterrizaje o inspección guiados por visión, especialmente en aquellas situaciones en las que no haya disponibilidad de estimar la posición del vehículo con base en GPS, cuando las estimaciones de GPS no tengan la suficiente precisión requerida por las tareas a realizar, o cuando restricciones de carga de pago impidan añadir sensores a bordo de los vehículos. Esta tesis trata con tres de las principales áreas de la visión por computador: seguimiento visual y estimación visual de la pose (posición y orientación), que a su vez constituyen la base de la tercera, denominada control servo visual, que en nuestra aplicación se enfoca en el empleo de información visual para controlar los UAVs. Al respecto, esta tesis se ocupa de presentar propuestas novedosas que permitan solucionar problemas relativos al seguimiento de objetos mediante cámaras ubicadas a bordo de los UAVs, se ocupa de la estimación de la pose de los UAVs basada en información visual obtenida por cámaras ubicadas en el suelo o a bordo, y también se ocupa de la aplicación de las técnicas propuestas para solucionar diferentes problemas, como aquellos concernientes al seguimiento visual para tareas de reabastecimiento autónomo en vuelo o al aterrizaje basado en visión, entre otros. Las diversas técnicas de visión por computador presentadas en esta tesis se proponen con el fin de solucionar dificultades que suelen presentarse cuando se realizan tareas basadas en visión con UAVs, como las relativas a la obtención, en tiempo real, de estimaciones robustas, o como problemas generados por vibraciones. Los algoritmos propuestos en esta tesis han sido probados con información de imágenes reales obtenidas realizando pruebas on-line y off-line. Diversos mecanismos de evaluación han sido empleados con el propósito de analizar el desempeño de los algoritmos propuestos, entre los que se incluyen datos simulados, imágenes de vuelos reales, estimaciones precisas de posición empleando el sistema VICON y comparaciones con algoritmos del estado del arte. Los resultados obtenidos indican que los algoritmos de visión por computador propuestos tienen un desempeño que es comparable e incluso mejor al de algoritmos que se encuentran en el estado del arte. Los algoritmos propuestos permiten la obtención de estimaciones robustas en tiempo real, lo cual permite su uso en tareas de control visual. El desempeño de estos algoritmos es apropiado para las exigencias de las distintas aplicaciones examinadas: reabastecimiento autónomo en vuelo, aterrizaje y estimación del estado del UAV. Abstract The main objective of this thesis is to provide Unmanned Aerial Vehicles (UAVs) with an additional vision-based source of information extracted by cameras located either on-board or on the ground, in order to allow UAVs to develop visually guided tasks, such as landing or inspection, especially in situations where GPS information is not available, where GPS-based position estimation is not accurate enough for the task to develop, or where payload restrictions do not allow the incorporation of additional sensors on-board. This thesis covers three of the main computer vision areas: visual tracking and visual pose estimation, which are the bases the third one called visual servoing, which, in this work, focuses on using visual information to control UAVs. In this sense, the thesis focuses on presenting novel solutions for solving the tracking problem of objects when using cameras on-board UAVs, on estimating the pose of the UAVs based on the visual information collected by cameras located either on the ground or on-board, and also focuses on applying these proposed techniques for solving different problems, such as visual tracking for aerial refuelling or vision-based landing, among others. The different computer vision techniques presented in this thesis are proposed to solve some of the frequently problems found when addressing vision-based tasks in UAVs, such as obtaining robust vision-based estimations at real-time frame rates, and problems caused by vibrations, or 3D motion. All the proposed algorithms have been tested with real-image data in on-line and off-line tests. Different evaluation mechanisms have been used to analyze the performance of the proposed algorithms, such as simulated data, images from real-flight tests, publicly available datasets, manually generated ground truth data, accurate position estimations using a VICON system and a robotic cell, and comparison with state of the art algorithms. Results show that the proposed computer vision algorithms obtain performances that are comparable to, or even better than, state of the art algorithms, obtaining robust estimations at real-time frame rates. This proves that the proposed techniques are fast enough for vision-based control tasks. Therefore, the performance of the proposed vision algorithms has shown to be of a standard appropriate to the different explored applications: aerial refuelling and landing, and state estimation. It is noteworthy that they have low computational overheads for vision systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the problem of autonomous navigation of multirotor platforms in GPS-denied environments. The focus of this work is on safe navigation based on unperfect odometry measurements, such as on-board optical flow measurements. The multirotor platform is modeled as a flying object with specific kinematic constraints that must be taken into account in order to obtain successful results. A navigation controller is proposed featuring a set of configurable parameters that allow, for instance, to have a configuration setup for fast trajectory following, and another to soften the control laws and make the vehicle navigation more precise and slow whenever necessary. The proposed controller has been successfully implemented in two different multirotor platforms with similar sensoring capabilities showing the openness and tolerance of the approach. This research is focused around the Computer Vision Group's objective of applying multirotor vehicles to civilian service applications. The presented work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on "Best Automatic Performance - IMAV 2012" and the second overall prize in the participating category "Indoor Flight Dynamics - Rotary Wing MAV". Most of the code related to the present work is available as two open-source projects hosted in GitHub.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Culture is the system of knowledge, from whose meanings the human being screened and selected their understanding of Reality in the broad sense, and interprets and regulates the facts and data of social behavior. In this sense, culture is a program for social action and acting in humans during the process of socialization and social interaction. The meanings of each culture are the cumulative product of collective and individual thinking, in ecological economic, social and political specific situations, so are the expression of each particular cultural historical conjuncture. Moreover, the universal cognitive structure for the apprehension of cultural reality is the World Vision (WV). Due to its importance and significance as substratum of religious and political belief systems, we will gird our study to mythical cognitive mode or mythical WV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because organizations are making large investments in Information systems (IS), efficient IS project management has been found critical to success. This study examines how the use of incentives can improve the project success. Agency theory is used to: identify motivational factors of project success, help the IS owners to understand to what extent management incentives can improve IS development and implementation (ISD/I). The outcomes will help practitioners and researchers to build on theoretical model of project management elements which lead to project success. Given the principal-agent nature of most significant scale of IS development, insights that will allow for greater alignment of the agent’s goals with those of the principal through incentive contracts, will serve to make ISD/I both more efficient and more effective, leading to more successful IS projects.

Relevância:

100.00% 100.00%

Publicador: