948 resultados para Computer Engineering|Computer science
Resumo:
Constant development of new wireless standards increases the demand for more radiating elements in compact end-user platforms. A decrease in antenna separation gives rise to increased antenna coupling, resulting in a reduction of the signal-to-interference-plus-noise-ratio (SINR) between transmitter and receiver. This paper proposes a decoupling network which provides dual band port isolation for a pair of distinct antennas. A prototype has been fabricated to verify the theory.
Resumo:
Key decisions at the collection, pre-processing, transformation, mining and interpretation phase of any knowledge discovery from database (KDD) process depend heavily on assumptions and theorectical perspectives relating to the type of task to be performed and characteristics of data sourced. In this article, we compare and contrast theoretical perspectives and assumptions taken in data mining exercises in the legal domain with those adopted in data mining in TCM and allopathic medicine. The juxtaposition results in insights for the application of KDD for Traditional Chinese Medicine.
Resumo:
A sub optimal resource allocation algorithm for Orthogonal Frequency Division Multiplexing (OFDM) based cooperative scheme is proposed. The system consists of multiple relays. Subcarrier space is divided into blocks and relays participating in cooperation are allocated specific blocks to be used with a user. To ensure unique subcarrier assignment system is constrained such that same block cannot be used by more than one user. Users are given fair block assignments while no restriction for maximum number of blocks a relay can employ is given. Forced cost based decisions [1] are used for block allocation. Simulation results show that this scheme outperforms a non cooperating scheme with sequential allocation with respect to power usage.
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
Quality based frame selection is a crucial task in video face recognition, to both improve the recognition rate and to reduce the computational cost. In this paper we present a framework that uses a variety of cues (face symmetry, sharpness, contrast, closeness of mouth, brightness and openness of the eye) to select the highest quality facial images available in a video sequence for recognition. Normalized feature scores are fused using a neural network and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face recognition system. Experiments on the Honda/UCSD database shows that the proposed method selects the best quality face images in the video sequence, resulting in improved recognition performance.
Resumo:
Research interest in pedestrian behaviour spans the retail industry, emergency services, urban planners and other agencies. Most models to simulate and model pedestrian movement can be distinguished on the basis of geographical scale, from the micro-scale movement of obstacle avoidance, through the meso-scale of individuals planning multi-stop shopping trips, up to the macro-scale of overall flow of masses of people between places. In this paper, route-choice decision-making model is devised for modelling passengers flow in airport terminal. A set of devised advanced traits of passengers is firstly proposed. Advanced traits take into account a passenger’s cognitive preferences and demonstrate underlying motivations of route-choice decisions. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making. Passengers in the model are as intelligent agents who possess a bunch of initial basic traits and are categorized into five distinguish groups in terms of routing preferences. Route choices are consecutively determined by inferring current advanced traits according to the utility matrix.
Resumo:
Complex flow datasets are often difficult to represent in detail using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows (i.e., complex dynamics and time-dependent). In this paper, we review two popular texture-based techniques and their application to flow datasets sourced from real research projects. The texture-based techniques investigated were Line Integral Convolution (LIC), and Image-Based Flow Visualisation (IBFV). We evaluated these techniques and in this paper report on their visualisation effectiveness (when compared with traditional techniques), their ease of implementation, and their computational overhead.
Resumo:
Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.
Resumo:
A Flash Event (FE) represents a period of time when a web-server experiences a dramatic increase in incoming traffic, either following a newsworthy event that has prompted users to locate and access it, or as a result of redirection from other popular web or social media sites. This usually leads to network congestion and Quality-of-Service (QoS) degradation. These events can be mistaken for Distributed Denial-of-Service (DDoS) attacks aimed at disrupting the server. Accurate detection of FEs and their distinction from DDoS attacks is important, since different actions need to be undertaken by network administrators in these two cases. However, lack of public domain FE datasets hinders research in this area. In this paper we present a detailed study of flash events and classify them into three broad categories. In addition, the paper describes FEs in terms of three key components: the volume of incoming traffic, the related source IP-addresses, and the resources being accessed. We present such a FE model with minimal parameters and use publicly available datasets to analyse and validate our proposed model. The model can be used to generate different types of FE traffic, closely approximating real-world scenarios, in order to facilitate research into distinguishing FEs from DDoS attacks.
Resumo:
This work-in-progress paper presents an ensemble-based model for detecting and mitigating Distributed Denial-of-Service (DDoS) attacks, and its partial implementation. The model utilises network traffic analysis and MIB (Management Information Base) server load analysis features for detecting a wide range of network and application layer DDoS attacks and distinguishing them from Flash Events. The proposed model will be evaluated against realistic synthetic network traffic generated using a software-based traffic generator that we have developed as part of this research. In this paper, we summarise our previous work, highlight the current work being undertaken along with preliminary results obtained and outline the future directions of our work.
Resumo:
Studies dedicated to understanding the relationship between gaming and mental health, have traditionally focused on the effects of depression, anxiety, obsessive usage, aggression, obesity, and faltering ‘real life’ relationships. The complexity of game genre and personality aside, this review aims to define a space for a positive relationship between videogame play and wellbeing by applying current videogame research to the criteria that defines the wellbeing construct ‘flourishing’. Self- determination theory (SDT), and flow provide context, and areas of overlap are explored.
Resumo:
Young drivers aged 17-24 years are at a risk of death and injury from road crashes primarily due to their age and inexperience on the road. Our research aims to investigate if a gamified mobile tracking and intervention tool can help to address this issue. We aim to build a smartphone application to support the current process of logging driving hours using a physical logbook and pen in Queensland. This provides an easier way to log driving hours than recording them in a logbook. In an attempt to engage Learners and encourage them to undertake more diverse driving practice we will explore how game elements can be integrated into the experience to motivate Learners. Previous research in other domains has shown that framing tasks as game-like can help engage and motivate users, however the addition of game elements to this space provides some interesting design challenges. This paper presents an overview of the research and presents these challenges for further discussion.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
Resumo:
Trivium is a keystream generator for a binary additive synchronous stream cipher. It was selected in the final portfolio for the Profile 2 category of the eSTREAM project. The keystream generator is constructed using bit- based shift registers. In this paper we present an alternate representation of Trivium using word-based shift registers, with a word size of three bits. This representation is useful for determining cycles of internal state values. Under this representation it is clear that the state space can be partitioned into subspaces and that over some of these subspaces the state update function is effectively linear. The role of the initialization process is critical in ensuring the states used for generating keystream are updated nonlinearly at some point, as the state update function alone does not provide this.
Resumo:
This paper analyses the pairwise distances of signatures produced by the TopSig retrieval model on two document collections. The distribution of the distances are compared to purely random signatures. It explains why TopSig is only competitive with state of the art retrieval models at early precision. Only the local neighbourhood of the signatures is interpretable. We suggest this is a common property of vector space models.