956 resultados para Computational approach
Resumo:
Peacemaking in Bosnia-Herzegovina is a controversial subject that engaged the political energies of the international community for several years without resolution. While international efforts at peacemaking warrant a critique in their own right, the assumptions that lie behind popular perceptions of peacemaking must also be examined. This article explores the proposition that the promotion of multi-ethnic contact between Bosnian people is at least as important as elections or the reconstruction of political institutions. Indeed, the restoration and development of inter-ethnic relationships, especially at grassroots level, is essential for the establishment of sustainable peace. This article thus focuses on the roles of NGOs (Non-governmental organisations) active at the grassroots level in Bosnia, such as the Centre for Drama Education in Mostar, Project Firefly in Brcko, and the CARE Welcome Project in Sarajevo, which represent a grassroots form of peacemaking that incorporates local knowledge and understandings of the conflict within peace projects.
Resumo:
The binary diffusivities of water in low molecular weight sugars; fructose, sucrose and a high molecular weight carbohydrate; maltodextrin (DE 11) and the effective diffusivities of water in mixtures of these sugars (sucrose, glucose, fructose) and maltodextrin (DE 11) were determined using a simplified procedure based on the Regular Regime Approach. The effective diffusivity of these mixtures exhibited both the concentration and molecular weight dependence. Surface stickiness was observed in all samples during desorption, with fructose exhibiting the highest and maltodextrin the lowest. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A thermodynamic approach based on the Bender equation of state is suggested for the analysis of supercritical gas adsorption on activated carbons at high pressure. The approach accounts for the equality of the chemical potential in the adsorbed phase and that in the corresponding bulk phase and the distribution of elements of the adsorption volume (EAV) over the potential energy for gas-solid interaction. This scheme is extended to subcritical fluid adsorption and takes into account the phase transition in EAV The method is adapted to gravimetric measurements of mass excess adsorption and has been applied to the adsorption of argon, nitrogen, methane, ethane, carbon dioxide, and helium on activated carbon Norit R I in the temperature range from 25 to 70 C. The distribution function of adsorption volume elements over potentials exhibits overlapping peaks and is consistently reproduced for different gases. It was found that the distribution function changes weakly with temperature, which was confirmed by its comparison with the distribution function obtained by the same method using nitrogen adsorption isotherm at 77 K. It was shown that parameters such as pore volume and skeleton density can be determined directly from adsorption measurements, while the conventional approach of helium expansion at room temperature can lead to erroneous results due to the adsorption of helium in small pores of activated carbon. The approach is a convenient tool for analysis and correlation of excess adsorption isotherms over a wide range of pressure and temperature. This approach can be readily extended to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).
Resumo:
Clinical trials showing the benefits of reducing the effects of TNF-alpha in rheumatoid arthritis have highlighted the key role of the cytokine TNF-alpha in this inflammatory condition. A new approach to reducing the effects of TNF-alpha is to decrease its synthesis by inhibiting TNF-alpha converting enzyme with GW3333. In rat models of arthritis, GW3333 has some beneficial effects. Further longer-term studies of GW3333 in animal models are required to determine whether its benefit is maintained. TACE inhibition may represent a new approach to treating inflammation.
Resumo:
An equivalent unit cell waveguide approach (WGA) to designing 4 multilayer microstrip reflectarray of variable size patches is presented. In this approach, a normal incidence of a plane wave on an infinite periodic array of radiating elements is considered to obtain reflection coefficient phase curves for the reflectarray's elements. It is shown that this problem is equivalent to the problem of reflection of the dominant TEM mode in a waveguide with patches interleaved by layers of dielectric. This waveguide problem is solved using a field matching technique and a method of moments (MoM). Based on this solution, a fast computer algorithm is developed to generate reflection coefficient phase curves for a multilayer microstrip patch reflectarray. The validity of the developed algorithm is tested against alternative approaches and Agilent High Frequency Structure Simulator (HFSS). Having confirmed the validity of the WGA approach, a small offset feed two-layer microstrip patch array is designed and developed. This reflectarray is tested experimentally and shows good performance.
Resumo:
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
For zygosity diagnosis in the absence of genotypic data, or in the recruitment phase of a twin study where only single twins from same-sex pairs are being screened, or to provide a test for sample duplication leading to the false identification of a dizygotic pair as monozygotic, the appropriate analysis of respondents' answers to questions about zygosity is critical. Using data from a young adult Australian twin cohort (N = 2094 complete pairs and 519 singleton twins from same-sex pairs with complete responses to all zygosity items), we show that application of latent class analysis (LCA), fitting a 2-class model, yields results that show good concordance with traditional methods of zygosity diagnosis, but with certain important advantages. These include the ability, in many cases, to assign zygosity with specified probability on the basis of responses of a single informant (advantageous when one zygosity type is being oversampled); and the ability to quantify the probability of misassignment of zygosity, allowing prioritization of cases for genotyping as well as identification of cases of probable laboratory error. Out of 242 twins (from 121 like-sex pairs) where genotypic data were available for zygosity confirmation, only a single case was identified of incorrect zygosity assignment by the latent class algorithm. Zygosity assignment for that single case was identified by the LCA as uncertain (probability of being a monozygotic twin only 76%), and the co-twin's responses clearly identified the pair as dizygotic (probability of being dizygotic 100%). In the absence of genotypic data, or as a safeguard against sample duplication, application of LCA for zygosity assignment or confirmation is strongly recommended.
Resumo:
In this paper we examine the effects of varying several experimental parameters in the Kane quantum computer architecture: A-gate voltage, the qubit depth below the silicon oxide barrier, and the back gate depth to explore how these variables affect the electron density of the donor electron. In particular, we calculate the resonance frequency of the donor nuclei as a function of these parameters. To do this we calculated the donor electron wave function variationally using an effective-mass Hamiltonian approach, using a basis of deformed hydrogenic orbitals. This approach was then extended to include the electric-field Hamiltonian and the silicon host geometry. We found that the phosphorous donor electron wave function was very sensitive to all the experimental variables studied in our work, and thus to optimize the operation of these devices it is necessary to control all parameters varied in this paper.
Resumo:
Published mobility measurements obtained by capillary zone electrophoresis of human growth hormone peptides are described reasonably well by the classical theoretical relationships for electrophoretic migration. This conformity between theory and experiment has rendered possible a more critical assessment of a commonly employed empirical relationship between mobility (u), net charge (z) and molecular mass (M) of peptides in capillary electrophoresis. The assumed linear dependence between u and z/M-2/3 is shown to be an approximate description of a shallow curvilinear dependence convex to the abscissa. An improved procedure for the calculation of peptide charge (valence) is also described. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In the previous two papers in this three-part series, we have examined visual pigments, ocular media transmission, and colors of the coral reef fish of Hawaii. This paper first details aspects of the light field and background colors at the microhabitat level on Hawaiian reefs and does so from the perspective and scale of fish living on the reef. Second, information from all three papers is combined in an attempt to examine trends in the visual ecology of reef inhabitants. Our goal is to begin to see fish the way they appear to other fish. Observations resulting from the combination of results in all three papers include the following. Yellow and blue colors on their own are strikingly well matched to backgrounds on the reef such as coral and bodies of horizontally viewed water. These colors, therefore, depending on context, may be important in camouflage as well as conspicuousness. The spectral characteristics of fish colors are correlated to the known spectral sensitivities in reef fish single cones and are tuned for maximum signal reliability when viewed against known backgrounds. The optimal positions of spectral sensitivity in a modeled dichromatic visual system are generally close to the sensitivities known for reef fish. Models also predict that both UV-sensitive and red-sensitive cone types are advantageous for a variety of tasks. UV-sensitive cones are known in some reef fish, red-sensitive cones have yet to be found. Labroid colors, which appear green or blue to us, may he matched to the far-red component of chlorophyll reflectance for camouflage. Red cave/hole dwelling reef fish are relatively poorly matched to the background they are often viewed against but this may be visually irrelevant. The model predicts that the task of distinguishing green algae from coral is optimized with a relatively long wavelength visual pigment pair. Herbivorous grazers whose visual pigments are known possess the longest sensitivities so far found. Labroid complex colors are highly contrasting complementary colors close up but combine, because of the spatial addition, which results from low visual resolution, at distance, to match background water colors remarkably well. Therefore, they are effective for simultaneous communication and camouflage.