957 resultados para Coffee - Diseases and pests


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: 1. To review Ct features suggestive of saprophytic aspergillosis (aspergilloma) and to correlate them with the final pathological results. 2. To illustrate the wide range of differential diagnosis. Methods and materials: The electronic database of our department from 1995 to 2007 revealed CT reports of 48 patients that had been considered very suggestive of aspergilloma. Two radiologists with 6 and 12 years experience in thoracic radiology jointly reviewed the corresponding CT features including ancillary findings and the underlying lung diseases and correlated them with the final pathological diagnosis. Results: Forty patients could be included in the study (12 women, mean age 52), while in 8 patients there was no adequate clinical follow-up. In 17 patients the diagnosis "mycetoma" due to aspergillus fumigatus infection was confirmed, either by surgery, biopsy or bronchoscopy. In 23 patients, differential diagnoses were found, such as cavitating bronchial carcinoma (n = 7), bacterial abscess (n = 3), typical (n = 2) and atypical (n = 2) tuberculosis, as well as inflammatory changes due to mucoviscidosis (n = 1), Wegener's disease (n = 1) or chronic obstructive pulmonary disease (n = 3). Fibromyxoide hamartoma, lung infarction and bronchomucocele were responsible for the typical CT feature in one patient each. Conclusion: 1. The typical CT feature suggesting mycetoma is softtissue proliferation within a pre-existing wall-thickened lung cavity, oten even considered "pathognomonic". However, this diagnosis was finally confirmed by surgery or laboratory findings in less than 50% of patients only. 2. Since differential diagnoses are very large, not only including cavitating lung cancer and tuberculosis, the individual underlying lung disease needs strongly being taken into account often giving the best clue for the correct diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocontrol pseudomonads are most known to protect plants from fungal diseases and to increase plant yield, while intriguing aspects on insecticidal activity have been discovered only recently. Here, we demonstrate that Fit toxin producing pseudomonads, in contrast to a naturally Fit-deficient strain, exhibit potent oral activity against larvae of Spodoptera littoralis, Heliothis virescens and Plutella xylostella, all major insect pests of agricultural crops. Spraying plant leaves with suspensions containing only 1000 Pseudomonas cells per ml was sufficient to kill 70-80% of Spodoptera and Heliothis larvae. Monitoring survival kinetics and bacterial titres in parallel, we demonstrate that Pseudomonas fluorescens CHA0 and Pseudomonas chlororaphis PCL1391, two bacteria harbouring the Fit gene cluster colonize and kill insects via oral infection. Using Fit mutants of CHA0 and PCL1391, we show that production of the Fit toxin contributes substantially to oral insecticidal activity. Furthermore, the global regulator GacA is required for full insecticidal activity. Our findings demonstrate the lethal oral activity of two root-colonizing pseudomonads so far known as potent antagonists of fungal plant pathogens. This adds insecticidal activity to the existing biocontrol repertoire of these bacteria and opens new perspectives for applications in crop pest control and in research on their ecological behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under optimal non-physiological conditions of low concentrations and low temperatures, proteins may spontaneously fold to the native state, as all the information for folding lies in the amino acid sequence of the polypeptide. However, under conditions of stress or high protein crowding as inside cells, a polypeptide may misfold and enter an aggregation pathway resulting in the formation of misfolded conformers and fibrils, which can be toxic and lead to neurodegenerative illnesses, such as Alzheimer's, Parkinson's or Huntington's diseases and aging in general. To avert and revert protein misfolding and aggregation, cells have evolved a set of proteins called molecular chaperones. Here, I focussed on the human cytosolic chaperones Hsp70 (DnaK) and HspllO, and co-chaperone Hsp40 (DnaJ), and the chaperonin CCT (GroEL). The cytosolic molecular chaperones Hsp70s/Hspll0s and the chaperonins are highly upregulated in bacterial and human cells under different stresses and are involved both in the prevention and the reversion of protein misfolding and aggregation. Hsp70 works in collaboration with Hsp40 to reactivate misfolded or aggregated proteins in a strict ATP dependent manner. Chaperonins (CCT and GroEL) also unfold and reactivate stably misfolded proteins but we found that it needed to use the energy of ATP hydrolysis in order to evict over- sticky misfolded intermediates that inhibited the unfoldase catalytic sites. Ill In this study, we initially characterized a particular type of inactive misfolded monomeric luciferase and rhodanese species that were obtained by repeated cycles of freeze-thawing (FT). These stable misfolded monomeric conformers (FT-luciferase and FT-rhodanese) had exposed hydrophobic residues and were enriched with wrong ß-sheet structures (Chapter 2). Using FT-luciferase as substrate, we found that the Hsp70 orthologs, called HspllO (Sse in yeast), acted similarly to Hsp70 as were bona fide ATP- fuelled polypeptide unfoldases and was much more than a mere nucleotide exchange factor, as generally thought. Moreover, we found that HspllO collaborated with Hsp70 in the disaggregation of stable protein aggregates in which Hsp70 and HspllO acted as equal partners that synergistically combined their individual ATP-consuming polypeptide unfoldase activities to reactivate the misfolded/aggregated proteins (Chapter 3). Using FT-rhodanese as substrate, we found that chaperonins (GroEL and CCT) could catalytically reactivate misfolded rhodanese monomers in the absence of ATP. Also, our results suggested that encaging of an unfolding polypeptide inside the GroEL cavity under a GroES cap was not an obligatory step as generally thought (Chapter 4). Further, we investigated the role of Hsp40, a J-protein co-chaperone of Hsp70, in targeting misfolded polypeptides substrates onto Hsp70 for unfolding. We found that even a large excess of monomeric unfolded a-synuclein did not inhibit DnaJ, whereas, in contrast, stable misfolded a-synuclein oligomers strongly inhibited the DnaK-mediated chaperone reaction by way of sequestering the DnaJ co-chaperone. This work revealed that DnaJ could specifically distinguish, and bind potentially toxic stably aggregated species, such as soluble a-synuclein oligomers involved in Parkinson's disease, and with the help of DnaK and ATP convert them into from harmless natively unfolded a-synuclein monomers (chapter 5). Finally, our meta-analysis of microarray data of plant and animal tissues treated with various chemicals and abiotic stresses, revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. It clearly showed that protein misfolding in the cytosol elicits a different response, consisting of upregulating the synthesis mainly of cytosolic chaperones, from protein misfolding in the endoplasmic reticulum (ER) that elicited a typical unfolded protein response (UPR), consisting of upregulating the synthesis mainly of ER chaperones. We proposed that drugs that best mimicked heat or UPR stress at increasing the chaperone load in the cytoplasm or ER respectively, may prove effective at combating protein misfolding diseases and aging (Chapter 6).  - Dans les conditions optimales de basse concentration et de basse température, les protéines vont spontanément adopter un repliement natif car toutes les informations nécessaires se trouvent dans la séquence des acides aminés du polypeptide. En revanche, dans des conditions de stress ou de forte concentration des protéines comme à l'intérieur d'une cellule, un polypeptide peu mal se replier et entrer dans un processus d'agrégation conduisant à la formation de conformères et de fibrilles qui peuvent être toxiques et causer des maladies neurodégénératives comme la maladie d'Alzheimer, la maladie de Parkinson ou la chorée de Huntington. Afin d'empêcher ou de rectifier le mauvais repliement des protéines, les cellules ont développé des protéines appelées chaperonnes. Dans ce travail, je me suis intéressé aux chaperonnes cytosoliques Hsp70 (DnaK) et HspllO, la co-chaperones Hsp40 (DnaJ), le complexe CCT/TRiC et GroEL. Chez les bactéries et les humains, les chaperonnes cytosoliques Hsp70s/Hspl 10s et les « chaperonines» sont fortement activées par différentes conditions de stress et sont toutes impliquées dans la prévention et la correction du mauvais repliement des protéines et de leur agrégation. Hsp70 collabore avec Hsp40 pour réactiver les protéines agrégées ou mal repliées et leur action nécessite de 1ATP. Les chaperonines (GroEL) déplient et réactivent aussi les protéines mal repliées de façon stable mais nous avons trouvé qu'elles utilisent l'ATP pour libérer les intermédiaires collant et mal repliés du site catalytique de dépliage. Nous avons initialement caractérisé un type particulier de formes stables de luciférase et de rhodanese monomériques mal repliées obtenues après plusieurs cycles de congélation / décongélation répétés (FT). Ces monomères exposaient des résidus hydrophobiques et étaient plus riches en feuillets ß anormaux. Ils pouvaient cependant être réactivés par les chaperonnes Hsp70+Hsp40 (DnaK+DnaJ) et de l'ATP, ou par Hsp60 (GroEL) sans ATP (Chapitre 2). En utilisant la FT-Luciferase comme substrat nous avons trouvé que HspllO (un orthologue de Hsp70) était une authentique dépliase, dépendante strictement de l'ATP. De plus, nous avons trouvé que HspllO collaborait avec Hsp70 dans la désagrégation d'agrégats stables de protéines en combinant leurs activités dépliase consommatrice d'ATP (Chapitre 3). En utilisant la FT-rhodanese, nous avons trouvé que les chaperonines (GroEL et CCT) pouvaient réactiver catalytiquement des monomères mal repliés en absence d'ATP. Nos résultats suggérèrent également que la capture d'un polypeptide en cours de dépliement dans la cavité de GroEL et sous un couvercle du complexe GroES ne serait pas une étape obligatoire du mécanisme, comme il est communément accepté dans la littérature (Chapitre 4). De plus, nous avons étudié le rôle de Hsp40, une co-chaperones de Hsp70, dans l'adressage de substrats polypeptidiques mal repliés vers Hsp70. Ce travail a révélé que DnaJ pouvait différencier et lier des polypeptide mal repliés (toxiques), comme des oligomères d'a-synucléine dans la maladie de Parkinson, et clairement les différencier des monomères inoffensifs d'a-synucléine (Chapitre 5). Finalement une méta-analyse de données de microarrays de tissus végétaux et animaux traités avec différents stress chimiques et abiotiques a révélé une possible co-expression de la machinerie des chaperonnes et des régulateurs de co- chaperonne. Cette meta-analyse montre aussi clairement que le mauvais repliement des protéines dans le cytosol entraîne la synthèse de chaperonnes principalement cytosoliques alors que le mauvais repliement de protéines dans le réticulum endoplasmique (ER) entraine une réponse typique de dépliement (UPR) qui consiste principalement en la synthèse de chaperonnes localisées dans l'ER. Nous émettons l'hypothèse que les drogues qui reproduisent le mieux les stress de chaleur ou les stress UPR pourraient se montrer efficaces dans la lutte contre le mauvais repliement des protéines et le vieillissement (Chapitre 6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear receptors (NRs) are ligand-dependent transcription factors whose activation affects genes controlling vital processes. Among them, the peroxisome proliferator-activated receptors (PPARs) have emerged as links between lipids, metabolic diseases, and innate immunity. PPARs are activated by fatty acids and their derivatives, many of which also signal through membrane receptors, thereby creating a lipid signaling network between the cell surface and the nucleus. Tissues that play a role in whole-body metabolic homeostasis, such as adipose tissue, liver, skeletal muscle, intestines, and blood vessel walls, are prone to inflammation when metabolism is disturbed, a complication that promotes type 2 diabetes and cardiovascular disease. This review discusses the protective roles of PPARs in inflammatory conditions and the therapeutic anti-inflammatory potential of PPAR ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to compare fungicide application timing for the control of sooty blotch and flyspeck (SBFS) of 'Fuji' apples in Rio Grande do Sul state, Brazil. The following treatments were evaluated in two growing seasons: two warning system-based (modified version of the Brown-Sutton-Hartmann system) spray of captan plus thiophanate methyl, with or without summer pruning; two calendar/rain-based spray of captan or a mixture of captan plus thiophanate methyl; fungicide spray timing based on a local integrated pest management (IPM) for the control of summer diseases; and a check without spraying. Sooty blotch and flyspeck incidence over time and their severity at harvest were evaluated. The highest number of spray was required by calendar/rain-based treatments (eight and seven sprays in the sequential years). The warning system recommended five and three sprays, in the sequential years, which led to the highest SBFS control efficacy expressed by the reduced initial inoculum and disease progress rate. Summer pruning enhanced SBFS control efficacy, especially by suppressing SBFS signs which tended to be restrained to the peduncle region of the fruit. Sooty blotch and flyspeck can be managed both with calendar and the grower-based IPM practices in Brazil, but a reduced number of sprays is required when the warning system is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To report on the demographic data from the first 18 months of enrollment to an international registry on autoinflammatory diseases in the context of the Eurofever project. METHODS: A web-based registry collecting baseline and clinical information on autoinflammatory diseases and related conditions is available in the member area of the PRINTO web-site. Anonymised data were collected with standardised forms. RESULTS: 1880 (M:F=916:964) individuals from 67 centers in 31 countries have been entered in the Eurofever registry. Most of the patients (1388; 74%), reside in western Europe, 294 (16%) in the eastern and southern Mediterranean region (Turkey, Israel, North Africa), 106 (6%) in eastern Europe, 54 in Asia, 27 in South America and 11 in Australia. In total 1049 patients with a clinical diagnosis of a monogenic autoinflammatory diseases have been enrolled; genetic analysis was performed in 993 patients (95%): 703 patients have genetically confirmed disease and 197 patients are heterozygous carriers of mutations in genes that are mutated in patients with recessively inherited autoinflammatory diseases. The median diagnosis delay was 7.3 years (range 0.3-76), with a clear reduction in patients born after the identification of the first gene associated with autoinflammatory diseases in 1997. CONCLUSIONS: A shared online registry for patients with autoinflammatory diseases is available and enrollment is ongoing. Currently, there are data available for analysis on clinical presentation, disease course, and response to treatment, and to perform large scale comparative studies between different conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Mortality among HIV-infected persons is decreasing, and causes of death are changing. Classification of deaths is hampered because of low autopsy rates, frequent deaths outside of hospitals, and shortcomings of International Statistical Classification of Diseases and Related Health Problems (ICD-10) coding. METHODS: We studied mortality among Swiss HIV Cohort Study (SHCS) participants (1988-2010) and causes of death using the Coding Causes of Death in HIV (CoDe) protocol (2005-2009). Furthermore, we linked the SHCS data to the Swiss National Cohort (SNC) cause of death registry. RESULTS: AIDS-related mortality peaked in 1992 [11.0/100 person-years (PY)] and decreased to 0.144/100 PY (2006); non-AIDS-related mortality ranged between 1.74 (1993) and 0.776/100 PY (2006); mortality of unknown cause ranged between 2.33 and 0.206/100 PY. From 2005 to 2009, 459 of 9053 participants (5.1%) died. Underlying causes of deaths were: non-AIDS malignancies [total, 85 (19%) of 446 deceased persons with known hepatitis C virus (HCV) status; HCV-negative persons, 59 (24%); HCV-coinfected persons, 26 (13%)]; AIDS [73 (16%); 50 (21%); 23 (11%)]; liver failure [67 (15%); 12 (5%); 55 (27%)]; non-AIDS infections [42 (9%); 13 (5%); 29 (14%)]; substance use [31 (7%); 9 (4%); 22 (11%)]; suicide [28 (6%); 17 (7%), 11 (6%)]; myocardial infarction [28 (6%); 24 (10%), 4 (2%)]. Characteristics of deceased persons differed in 2005 vs. 2009: median age (45 vs. 49 years, respectively); median CD4 count (257 vs. 321 cells/μL, respectively); the percentage of individuals who were antiretroviral therapy-naïve (13 vs. 5%, respectively); the percentage of deaths that were AIDS-related (23 vs. 9%, respectively); and the percentage of deaths from non-AIDS-related malignancies (13 vs. 24%, respectively). Concordance in the classification of deaths was 72% between CoDe and ICD-10 coding in the SHCS; and 60% between the SHCS and the SNC registry. CONCLUSIONS: Mortality in HIV-positive persons decreased to 1.33/100 PY in 2010. Hepatitis B or C virus coinfections increased the risk of death. Between 2005 and 2009, 84% of deaths were non-AIDS-related. Causes of deaths varied according to data source and coding system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antibody display technology (ADT) such as phage display (PD) has substantially improved the production of monoclonal antibodies (mAbs) and Ab fragments through bypassing several limitations associated with the traditional approach of hybridoma technology. In the current study, we capitalized on the PD technology to produce high affinity single chain variable fragment (scFv) against tumor necrosis factor-alpha (TNF- α), which is a potent pro-inflammatory cytokine and plays important role in various inflammatory diseases and malignancies. To pursue production of scFv antibody fragments against human TNF- α, we performed five rounds of biopanning using stepwise decreased amount of TNF-α (1 to 0.1 μ g), a semi-synthetic phage antibody library (Tomlinson I + J) and TG1 cells. Antibody clones were isolated and selected through enzyme-linked immunosorbent assay (ELISA) screening. The selected scFv antibody fragments were further characterized by means of ELISA, PCR, restriction fragment length polymorphism (RFLP) and Western blot analyses as well as fluorescence microscopy and flow cytometry. Based upon binding affinity to TNF-α , 15 clones were selected out of 50 positive clones enriched from PD in vitro selection. The selected scFvs displayed high specificity and binding affinity with Kd values at nm range to human TNF-α . The immunofluorescence analysis revealed significant binding of the selected scFv antibody fragments to the Raji B lymphoblasts. The effectiveness of the selected scFv fragments was further validated by flow cytometry analysis in the lipopolysaccharide (LPS) treated mouse fibroblast L929 cells. Based upon these findings, we propose the selected fully human anti-TNF-α scFv antibody fragments as potential immunotherapy agents that may be translated into preclinical/clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing prevalence of chronic diseases and multi-morbidity represents challenges for health systems worldwide. In that perspective, the current organization of healthcare delivery, fragmentation of care, limited use of evidence-based guidelines and patients'insufficient empowerment are some reasons explaining the current limited effectiveness of the management of chronically ill patients. Based on theoretical models such as the Chronic Care Model (CCM), initiatives targeting improvements in the care of patients with chronic diseases have been implemented worldwide since more than a decade. Their development in Switzerland, a health system where more than half of practices are still single handed [6], is only recent and infrequent. Structured programs for patients with chronic diseases or multimorbidity usually propose patient-centered interventions and consider an integrative multidisciplinary approach. Currently, little is known on the existence of such programs and on the role of family physicians (FPs)within these programs, in Switzerland. The objective of this study was to identify and describe current structured programs targeting chronic diseases or multi-morbidity in Switzerland. This may help in examining innovative approaches that are only developed locally but would deserve wider interest for further implementation. We conducted a telephone-based survey between June and November 2013 and contacted systematically key institutions, informants and stakeholders nationwide and in the 26 cantons...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absorption, transport and storage of iron are tightly regulated, as expected for an element, which is both essential and potentially toxic. Iron deficiency is the leading cause of anaemia, and it also compromises immune function and cognitive development. Iron overload damages the liver and other organs in hereditary hemochromatosis, and in thalassaemia patients with both transfusion and non-transfusionrelated iron accumulation. Excess iron has harmful effects in chronic liver diseases caused by excessive alcohol, obesity or viruses. There is evidence for involvement of iron in neurodegenerative diseases and in Type 2 diabetes. Variation in transferrin saturation, a biomarker of iron status, has been associated with mortality in patients with diabetes and in the general population13. All these associations between iron and either clinical disease or pathological processes make it important to understand the causes of variation in iron status. Importantly, information on genetic causes of variation can be used in Mendelian randomization studies to test whether variation in iron status is a cause or consequence of disease. We have used biomarkers of iron status (serum iron, transferrin, transferrin saturation and ferritin), which are commonly used clinically and readily measurable in thousands of individuals, and carried out a meta-analysis of human genomewide association study (GWAS) data from 11 discovery and eight replication cohorts. Our aims were to identify additional loci affecting markers of iron status in the general population and to relate the significant loci to information on gene expression to identify relevant genes. We also made an initial assessment of whether any such loci affect iron status in HFE C282Y homozygotes, who are at genetic risk of HFE-related iron overload (hereditary hemochromatosis type 1, OMIM #235200)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has seen the emergence of next-generation sequencing (NGS) technologies, which have revolutionized the field of human molecular genetics. With NGS, significant portions of the human genome can now be assessed by direct sequence analysis, highlighting normal and pathological variants of our DNA. Recent advances have also allowed the sequencing of complete genomes, by a method referred to as whole genome sequencing (WGS). In this work, we review the use of WGS in medical genetics, with specific emphasis on the benefits and the disadvantages of this technique for detecting genomic alterations leading to Mendelian human diseases and to cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wnt factors regulate neural stem cell development and neuronal connectivity. Here we investigated whether Wnt-3a and Wnt-3, expressed in the developing spinal cord, regulate proliferation and the neuronal differentiation of spinal cord neural precursors (SCNP). Wnt-3a promoted a sustained increase of SCNP proliferation, whereas Wnt-3 enhanced SCNP proliferation transiently and increased neurogenesis through β-catenin signaling. Consistent with this, Wnt-3a and Wnt-3 differently regulate the expression of Cyclin-dependent kinase inhibitors. Furthermore, Wnt-3a and Wnt-3 stimulated neurite outgrowth in SCNP-derived neurons through ß-catenin and TCF4-dependent transcription. GSK-3ß inhibitors mimicked Wnt signaling and promoted neurite outgrowth in established cultures. We conclude that Wnt-3a and Wnt-3 signal through the canonical Wnt/β-catenin pathway to regulate different aspects of SCNP development. These findings may be of therapeutic interest for the treatment of neurodegenerative diseases and nerve injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10-8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.